89 research outputs found

    Asymmetric Coupling Two-lane with Same Hopping Probabilities p Simple Exclusion Processes

    Get PDF
    AbstractIn the paper, we study a model which is that the particles move forward inside the two parallel lanes with the same hopping probabilities p (0<p<1) and jump only one direction between the both lanes by theoretical means. When the system is in the stationary-state, we can calculate currents, density profiles and phase diagrams by an approximate theoretical approach. The system includes seven stationary-state phases, there is an interesting phenomenon that when hopping probabilities become small, except the (MC, MC) phase, the region of all other phases decrease. This model can help us to understand the effect of traffic system when the speed of vehicles decreases better. Computer simulation is used to simulate the results. It can be found that the theoretical results are in excellent agreement with Monte Carlo computer simulations

    Numerical Simulation on Thermal Energy Storage Behavior of Cu/paraffin nanofluids PCMs

    Get PDF
    AbstractPCMs have foreseeable applications in residential buildings for effective use of solar energy. Paraffin is cheap and has moderate thermal energy storage density but low thermal conductivity. In this paper, we numerically investigate the melting processes of Cu/paraffin nanofluids PCMs. The results strongly suggested that the phase change heat transfer of paraffin was enhanced due to the addition of nanoparticles. For 1 wt% Cu/paraffin, the melting time can be saved 13.1%. The numerical results have a good agreement with the experimental results in describing the melting phenomena. These results show that adding nanoparticles is an efficient way to enhance the heat transfer in latent heat thermal energy storage system

    Relaxation oscillations of a piecewise-smooth slow-fast Bazykin's model with Holling type Ⅰ functional response

    Get PDF
    In this paper, we consider the dynamics of a slow-fast Bazykin's model with piecewise-smooth Holling type Ⅰ functional response. We show that the model has Saddle-node bifurcation and Boundary equilibrium bifurcation. Furthermore, it is also proven that the model has a homoclinic cycle, a heteroclinic cycle or two relaxation oscillation cycles for different parameters conditions. These results imply the dynamical behavior of the model is sensitive to the predator competition rate and the initial densities of prey and predators. In order to support the theoretical analysis, we present some phase portraits corresponding to different values of parameters by numerical simulation. These phase portraits include two relaxation oscillation cycles, an unstable relaxation oscillation cycle surrounded by a stable homoclinic cycle; the coexistence of a heteroclinic cycle and an unstable relaxation oscillation cycle. These results reveal far richer and much more complex dynamics compared to the model without different time scale or with smooth Holling type Ⅰ functional response

    HIV-1 did not contribute to the 2019-nCoV genome

    Get PDF
    When a new pathogen that causes a global epidemic in humans, one key question is where it comes from. This is especially important for a zoonotic infectious disease that jumps from animals to humans. Knowing the origin of such a pathogen is critical to develop means to block further transmission and to develop vaccines. Discovery of the origin of a newly human pathogen is a sophisticated process that requires extensive and vigorous scientific validations and generally takes many years, such as the cases for HIV-1, SARS and MERS. Unfortunately, before the natural sources of new pathogens are clearly defined, conspiracy theories that the new pathogens are man-made often surface as the source. However, in all cases, such theories have been debunked in history

    Spatial differentiation and influencing factors of active layer thickness in the Da Hinggan Ling Prefecture

    Get PDF
    Active layer thickness (ALT) of permafrost changes significantly under the combined influence of human activities and climate warming, which has a significant impact on the ecological environment, hydrology, and engineering construction in cold regions. The spatial differentiation of Active layer thickness and its influencing factors have become one of the hot topics in the field of cryopedology in recent years, but there are few studies in the Da Hinggan Ling Prefecture (DHLP). In this study, the Stefan equation was used to simulate the Active layer thickness in the Da Hinggan Ling Prefecture, and the factor detection and interaction detection functions of geodetector were used to analyze the factors affecting the spatial differentiation of Active layer thickness from both natural and humanity aspects. The results showed that Active layer thickness in the Da Hinggan Ling Prefecture ranges from 58.82 cm to 212.55 cm, the determinant coefficient R2, MAE, RMSE between simulation results and the sampling points data were 0.86, 11.25 (cm) and 13.25 (cm), respectively. Lower Active layer thickness values are mainly distributed higher elevations in the west, which are dominated by forest (average ALT: 136.94 cm) and wetlands (average ALT: 71.88 cm), while the higher values are distributed on cultivated land (average ALT: 170.35 cm) and construction land (average ALT: 176.49 cm) in the southeast. Among the influencing factors, elevation is significantly negatively correlated with ALT. followed by summer mean LST, SLHF and snow depth. NDVI and SM has the strong explanation power for the spatial differentiation of ALT in factor detection. Regarding interactions, the explanatory power of slope ∊ snow depth is the highest of 0.83, followed by the elevation ∊ distance to settlements. The results can provide reference for the formulation of ecological environmental protection and engineering construction policies in cold regions

    Improved position offset based parameter determination of permanent magnet synchronous machines under different load conditions

    Get PDF
    Š The Institution of Engineering and Technology 2017.This study proposes a novel method for the parameter determination of permanent magnet (PM) synchronous machines under different load conditions. It can identify the total dq-axis flux linkages and also the PM flux linkage separately by the addition of a pair of negative and positive position offsets. It is also noteworthy that the influence of uncertain inverter non-linearity and winding resistance is cancelled during the modelling process, and the experimental results on two different PM synchronous machines show a good agreement with the finite-element prediction results. More importantly, it shows good performance in online tracking the variation of PM flux linkage, which is an important feature for aiding the condition monitoring of PMs, for example, monitoring the temperature of PMs

    An unprecedented synergy of high-temperature tensile strength and ductility in a NiCoCrAlTi high-entropy alloy

    Full text link
    The present work reported a novel L12-strengthening NiCoCrAlTi high entropy alloy (HEA) with an outstanding synergy of tensile strength and ductility at both ambient and high temperatures. Transmission electron microscopy (TEM) characterization revealed a high density of rod-like and spheroidal L12 precipitates distributing in the micro/nanograins and non-recrystallized regions in the annealed specimens. The tremendously high yield stress, ultimate tensile stress (UTS), and ductility of the HEA at 600 C were ~1060 MPa, 1271 MPa, and 25%, respectively, which were significantly superior to most reported HEAs and Co- and Ni-based superalloys to date. Systematic TEM analysis unveiled that the cooperation among L12 precipitation, extensive stacking faults (SFs), deformation twins (DTs), immobile Lomer-Cottrell (L-C) locks formed from interactions between SFs and SFs/DTs, hierarchical SFs/DTs networks, as well as hetero-deformation-induced strengthening dominated the plastic deformation at 600 C. Such a unique deformation mechanism enabled extremely high tensile strength and sustained ductility of the HEA at a high temperature

    Modeling and Simulating Dynamics of Complete- and Poor-Response Chronic Hepatitis B Chinese Patients for Adefovir and Traditional Chinese Medicine Plus Adefovir Therapy

    Get PDF
    ChiCTR-TRC-11001263 study was the first large-scale double-blind randomized placebo-controlled traditional Chinese medicines (TCMs) and adefovir (ADV) antihepatitis B virus (HBV) infection trial in the world. A total of 560 hepatitis B e antigen- (HBeAg-) positive Chinese patients with chronical HBV were randomly classified, in 1 : 1 ratio, into two groups: experimental group (EXG) receiving TCMs + ADV and controlled group (CTG) receiving ADV + TCM-placebo treatment for 48 weeks. This paper introduces two models to model and simulate the evolutions of dynamics for the complete-response patients and the poor-response patients in EXG and CTG, respectively. The stimulated mean HBV DNA and alanine aminotransferase (ALT) levels were close to the patients’ experimental data. Analysis and simulations suggest that the activated patients’ immune functions by TCMs + ADV may not only clear infected hepatocytes, but also clear HBV, which made the complete-response patients’ mean serum HBV DNA levels in EXG reduce rapidly 12 weeks’ earlier than the ones in CTG. One can assume that both the TCMs and ADV have the function of preventing complete-response patients’ infected hepatocytes from being injured by cytotoxic T lymphocytes (CTLs); the patients’ activated immune cells may also block HBV replications

    An Improved In-house MALDI-TOF MS Protocol for Direct Cost-Effective Identification of Pathogens from Blood Cultures

    Get PDF
    Background: Bloodstream infection is a major cause of morbidity and mortality in hospitalized patients worldwide. Delays in the identification of microorganisms often leads to a poor prognosis. The application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) directly to blood culture (BC) broth can potentially identify bloodstream infections earlier, and facilitate timely management.Methods: We developed an “in-house” (IH) protocol for direct MALDI-TOF MS based identification of organisms in positive BCs. The IH protocol was initially evaluated and improved with spiked BC samples, and its performance was compared with the commercial Sepsityper™ kit using both traditional and modified cut-off values. We then studied in parallel the performance of the IH protocol and the colony MS identifications in positive clinical BC samples using only modified cut-off values. All discrepancies were investigated by “gold standard” of gene sequencing.Results: In 54 spiked BC samples, the IH method showed comparable results with Sepsityper™ after applying modified cut-off values. Specifically, accurate species and genus level identification was achieved in 88.7 and 3.9% of all the clinical monomicrobial BCs (284/301, 94.4%), respectively. The IH protocol exhibited superior performance for Gram negative bacteria than for Gram positive bacteria (92.8 vs. 82.4%). For anaerobes and yeasts, accurate species identification was achieved in 80.0 and 90.0% of the cases, respectively. For polymicrobial cultures (17/301, 5.6%), MALDI-TOF MS correctly identified a single species present in all the polymicrobial BCs under the Standard mode, while using the MIXED method, two species were correctly identified in 52.9% of the samples. Comparisons based on BC bottle type, showed that the BACTEC™ Lytic/10 Anaerobic/F culture vials performed the best.Conclusion: Our study provides a novel and effective sample preparation method for MALDI-TOF MS direct identification of pathogens from positive BC vials, with a lower cost (1.5vs.1.5 vs. 7) albeit a slightly more laborious extracting process (an extra 15 min) compared with Sepsityper™ kit

    Tailoring magnetic behavior of CoFeMnNiX (X = Al, Cr, Ga, and Sn) high entropy alloys by metal doping

    Get PDF
    Magnetic materials with excellent performances are desired for functional applications. Based on the high-entropy effect, a system of CoFeMnNiX (X = Al, Cr, Ga, and Sn) magnetic alloys are designed and investigated. The dramatic change in phase structures from face-centered-cubic (FCC) to ordered body-centered-cubic (BCC) phases, caused by adding Al, Ga, and Sn in CoFeMnNiX alloys, originates from the potent short-range chemical order in the liquid state predicted by ab initio molecular dynamics (AIMD) simulations. This phase transition leads to the significant enhancement of the saturation magnetization (Ms), e.g., the CoFeMnNiAl alloy has Ms of 147.86 Am2/kg. First-principles density functional theory (DFT) calculations on the electronic and magnetic structures reveal that the anti-ferromagnetism of Mn atoms in CoFeMnNi is suppressed especially in the CoFeMnNiAl HEA because Al changes the Fermi level and itinerant electron-spin coupling that lead to ferromagnetism
    • …
    corecore