3 research outputs found

    Ultrasound radiomics nomogram for predicting large-number cervical lymph node metastasis in papillary thyroid carcinoma

    Get PDF
    PurposeTo evaluate the value of preoperative ultrasound (US) radiomics nomogram of primary papillary thyroid carcinoma (PTC) for predicting large-number cervical lymph node metastasis (CLNM).Materials and methodsA retrospective study was conducted to collect the clinical and ultrasonic data of primary PTC. 645 patients were randomly divided into training and testing datasets according to the proportion of 7:3. Minimum redundancy-maximum relevance (mRMR) and least absolution shrinkage and selection operator (LASSO) were used to select features and establish radiomics signature. Multivariate logistic regression was used to establish a US radiomics nomogram containing radiomics signature and selected clinical characteristics. The efficiency of the nomogram was evaluated by the receiver operating characteristic (ROC) curve and calibration curve, and the clinical application value was assessed by decision curve analysis (DCA). Testing dataset was used to validate the model.ResultsTG level, tumor size, aspect ratio, and radiomics signature were significantly correlated with large-number CLNM (all P< 0.05). The ROC curve and calibration curve of the US radiomics nomogram showed good predictive efficiency. In the training dataset, the AUC, accuracy, sensitivity, and specificity were 0.935, 0.897, 0.956, and 0.837, respectively, and in the testing dataset, the AUC, accuracy, sensitivity, and specificity were 0.782, 0.910, 0.533 and 0.943 respectively. DCA showed that the nomogram had some clinical benefits in predicting large-number CLNM.ConclusionWe have developed an easy-to-use and non-invasive US radiomics nomogram for predicting large-number CLNM with PTC, which combines radiomics signature and clinical risk factors. The nomogram has good predictive efficiency and potential clinical application value

    Pooled Sequencing Analysis of Geese (Anser cygnoides) Reveals Genomic Variations Associated With Feather Color

    Get PDF
    During the domestication of the goose a change in its feather color took place, however, the molecular mechanisms responsible for this change are not completely understood. Here, we performed whole-genome resequencing on three pooled samples of geese (feral and domestic geese), with two distinct feather colors, to identify genes that might regulate feather color. We identified around 8 million SNPs within each of the three pools and validated allele frequencies for a subset of these SNPs using PCR and Sanger sequencing. Several genomic regions with signatures of differential selection were found when we compared the gray and white feather color populations using the FST and Hp approaches. When we combined previous functional studies with our genomic analyses we identified 26 genes (KITLG, MITF, TYRO3, KIT, AP3B1, SMARCA2, ROR2, CSNK1G3, CCDC112, VAMP7, SLC16A2, LOC106047519, RLIM, KIAA2022, ST8SIA4, LOC106044163, TRPM6, TICAM2, LOC106038556, LOC106038575, LOC106038574, LOC106038594, LOC106038573, LOC106038604, LOC106047489, and LOC106047492) that potentially regulate feather color in geese. These results substantially expand the catalog of potential feather color regulators in geese and provide a basis for further studies on domestication and avian feather coloration

    Adaptive Evolution of the Fox Coronavirus Based on Genome-Wide Sequence Analysis

    No full text
    Purpose. To report the first complete fox coronavirus (CoV) genome sequence obtained through genome-wide amplifications and to understand the adaptive evolution of fox CoV. Methods. Anal swab samples were collected from 35 foxes to detect the presence of CoV and obtain the virus sequence. Phylogenetic analysis was conducted using MrBayes. The possibility of recombination within these sequences was assessed using GARD. Analysis of the levels of selection pressure experienced by these sequences was assessed using methods on both the PAML and Data Monkey platforms. Results. Of the 35 samples, two were positive, and complete genome sequences for the viruses were obtained. Phylogenetic analysis, using Bayesian methods, of these sequences, together with other CoV sequences, revealed that the fox CoV sequences clustered with canine coronavirus (CCoV) sequences, with sequences from other carnivores more distantly related. In contrast to the feline, ferret and mink CoV sequences that clustered into species-specific clades, the fox CoV fell within the CCoV clade. Minimal evidence for recombination was found among the sequences. A total of 7, 3, 14, and 2 positively selected sites were identified in the M, N, S, and 7B genes, respectively, with 99, 111, and 581 negatively selected sites identified in M, N, and S genes, respectively. Conclusion. The complete genome sequence of fox CoV has been obtained for the first time. The results suggest that the genome sequence of fox CoV may have experienced adaptive evolution in the genes replication, entry, and virulence. The number of sites in each gene that experienced negative selection is far greater than the number that underwent positive selection, suggesting that most of the sequence is highly conserved and important for viral survive. However, positive selection at a few sites likely aided these viruses to adapt to new environments.Peer Reviewe
    corecore