31 research outputs found

    Resistance to preservatives and the viable but non-culturable state formation of Asaia lannensis in flavored syrups

    Get PDF
    Food security is a crucial issue that has caused extensive concern, and the use of food flavors has become prevalent over time. we used the molecular biological techniques, preservative susceptibility testing, viable but non-culturable (VBNC) state induction testing, and a transcriptome analysis to examine the bacterial contamination of favored syrup and identify the causes and develop effective control measures. The results showed that Asaia lannensis WLS1-1 is a microorganism that can spoil food and is a member of the acetic acid bacteria families. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests showed that WLS1-1 was susceptible to potassium sorbate (PS), sodium benzoate (SB), and sodium sulffte (SS) at pH 4.0. It revealed a progressive increase in resistance to these preservatives at increasing pH values. WLS1-1 was resistant to PS, SB and SS with an MIC of 4.0, 2.0 and 0.5  g/L at pH 5.0, respectively. The MIC values exceed the maximum permissible concentrations that can be added. The induction test of the VBNC state demonstrated that WLS1-1 lost its ability to grow after 321 days of PS induction, 229  days of SB induction and 52  days of SS induction combined with low temperature at 4°C. Additionally, laser confocal microscopy and a propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR) assay showed that WLS1-1 was still alive after VBNC formation. There were 7.192 ± 0.081 (PS), 5.416 ± 0.149 (SB) and 2.837 ± 0.134 (SS) log10(CFU/mL) of viable bacteria. An analysis of the transcriptome data suggests that Asaia lannensis can enter the VBNC state by regulating oxidative stress and decreasing protein synthesis and metabolic activity in response to low temperature and preservatives. The relative resistance of Asaia lannensis to preservatives and the induction of the VBNC state by preservatives are the primary factors that contribute to the contamination of favored syrup by this bacterium. To our knowledge, this study represents the first evidence of the ability of Asaia lannensis to enter the VBNC state and provides a theoretical foundation for the control of organisms with similar types of activity

    Vulto-van Silfhout-de Vries syndrome caused by de novo variants of DEAF1 gene: a case report and literature review

    Get PDF
    Vulto-van Silfhout-de Vries syndrome (VSVS; MIM 615828) is an extremely rare autosomal dominant disorder with unknown incidence. It is always caused by de novo heterozygous pathogenic variants in the DEAF1 gene, which encodes deformed epidermal autoregulatory factor-1 homology. VSVS is characterized by mild to severe intellectual disability (ID) and/or global developmental delay (GDD), seriously limited language expression, behavioral abnormalities, somnipathy, and reduced pain sensitivity. In this study, we present a Chinese boy with moderate GDD and ID, severe expressive language impairment, behavioral issues, autism spectrum disorder (ASD), sleeping dysfunction, high pain threshold, generalized seizures, imbalanced gait, and recurrent respiratory infections as clinical features. A de novo heterozygous pathogenic missense variant was found in the 5th exon of DEAF1 gene, NM_021008.4 c.782G>C (p. Arg261Pro) variant by whole exome sequencing (WES). c.782G>C had not been previously reported in genomic databases and literature. According to the ACMG criteria, this missense variant was considered to be “Likely Pathogenic”. We diagnosed the boy with VSVS both genetically and clinically. At a follow-up of 2.1 years, his seizures were well controlled after valproic acid therapy. In addition, the child’s recurrent respiratory infections improved at 3.5 years of age, which has not been reported in previous individuals. Maybe the recurrent respiratory infections like sleep problems reported in the literature are not permanent but may improve naturally over time. The literature review showed that there were 35 individuals with 28 different de novo pathogenic variants of DEAF1-related VSVS. These variants were mostly missense and the clinical manifestations were similar to our patient. Our study expands the genotypic and phenotypic profiles of de novo DEAF1

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Experimental Investigation and Numerical Simulation of a Levy Hinged-Beam Cable Dome

    No full text
    According to existing rigid roofing projects, a new structure called the Levy hinged-beam cable dome is proposed. By replacing the upper flexible cables with hinged beams, rigid plates can be installed overhead. To fulfill the requirements of integral tow-lifting construction, the setting criteria for the temporary hinged joints on ridge beams were presented. An 8-m diameter specimen was manufactured and monitored to investigate the structural configurations during the accumulative traction-hoisting construction process. Finally, the specimen was tested under full-span and half-span loading conditions, while a numerical model was built to verify the experimental values. The results show that in the early stages of traction-hoisting, the structure establishes the overall prestress and finds its internal force balance, while the entire structure is in a shape of “ω”. As the component’s internal force increases during the construction steps, and the local deformations of the hinged beams gradually decrease, with the entire structure changing from “ω” to “m”, and finally reach their designed states. Under full-span loads, large local deformations occurred at the HB-3 hinges, while the bending stresses of these hinged beams were relatively small. Under half-span loads, the loading part exhibits a downward appearance, while the unloading part exhibits upward deflection

    Overexpression of a type III PKS gene affording novel violapyrones with enhanced anti-influenza A virus activity

    No full text
    Abstract Background Type III polyketide synthases (PKSs) are simple homodimer ketosynthases that distribute across plants, fungi, and bacteria, catalyzing formation of pyrone- and resorcinol-types aromatic polyketides with various bioactivities. The broad substrate promiscuity displayed by type III PKSs makes them wonderful candidates for expanding chemical diversity of polyketides. Results Violapyrone B (VLP B, 10), an α-pyrone compound produced by deepsea-derived Streptomyces somaliensis SCSIO ZH66, is encoded by a type III PKS VioA. We overexpressed VioA in three different hosts, including Streptomyces coelicolor M1146, Streptomyces sanyensis FMA as well as the native producer S. somaliensis SCSIO ZH66, leading to accumulation of different violapyrone compounds. Among them, S. coelicolor M1146 served as the host producing the most abundant violapyrones, from which five new (2–4, 7 and 12) and nine known (1, 5, 6, 8–11, 13 and 14) compounds were identified. Anti-influenza A (H1N1) virus activity of these compounds was then evaluated using ribavirin as a positive control (IC50 = 112.9 μM), revealing that compounds 11–14 showed considerable activity with IC50 values of 112.7, 26.9, 106.7 and 28.8 μM, respectively, which are significantly improved as compared to that of VLP B (10) (IC50 > 200 μM). The productions of 10 and 13 were increased by adding P450 inhibitor metyrapone. In addition, site-directed mutagenesis experiment led to demonstration of the residue S242 to be essential for the activity of VioA. Conclusions Biological background of the expression hosts is an important factor impacting on the encoding products of type III PKSs. By using S. coelicolor M1146 as cell factory, we were able to generate fourteen VLPs compounds. Anti-H1N1 activity assay suggested that the lipophilic nature of the alkyl chains of VLPs plays an important role for the activity, providing valuable guidance for further structural optimization of VLPs

    Multifrequency Phase Difference of Arrival Range Measurement: Principle, Implementation, and Evaluation

    No full text
    Real-time location system (RLS) based on RFID is an effective indoor positioning system. The battery-free and low cost UHF passive tags can be attached on almost any objects, which are recognized as the best medium to achieve high precision ranging and positioning for large-scale objects. This paper proposes an indoor range measurement based on multifrequency phase difference of arrival (MF-PDoA) using UHF RFID passive tags and discusses the measurement principle, experiment implementation, and results evaluation in detail. After a theoretical overview of MF-PDoA range measurement principle, it introduces an experimental prototype under EPC C1G2 standard for range measurements. Both our prototype and a commercial off-the-shelf RFID reader have been used to verify the measurement method. We propose a Kalman filter and weighting method to process the measuring data. Experiment results indicate that, in a real environment, this method can effectively improve the ranging accuracy, which lays a foundation to extend the proposed measurement into two to three dimensions indoor object positioning

    Green synthesis of stable hybrid biocatalyst using a hydrogen-bonded, π-π-stacking supramolecular assembly for electrochemical immunosensor

    No full text
    Abstract Rational integration of native enzymes and nanoscaffold is an efficient means to access robust biocatalyst, yet remains on-going challenges due to the trade-off between fragile enzymes and harsh assembling conditions. Here, we report a supramolecular strategy enabling the in situ fusion of fragile enzymes into a robust porous crystal. A c2-symmetric pyrene tecton with four formic acid arms is utilized as the building block to engineer this hybrid biocatalyst. The decorated formic acid arms afford the pyrene tectons high dispersibility in minute amount of organic solvent, and permit the hydrogen-bonded linkage of discrete pyrene tectons to an extended supramolecular network around an enzyme in almost organic solvent-free aqueous solution. This hybrid biocatalyst is covered by long-range ordered pore channels, which can serve as the gating to sieve the catalytic substrate and thus enhance the biocatalytic selectivity. Given the structural integration, a supramolecular biocatalyst-based electrochemical immunosensor is developed, enabling the pg/mL detection of cancer biomarker

    A systematic evaluation of nucleotide properties for CRISPR sgRNA design

    No full text
    Abstract Background CRISPR is a versatile gene editing tool which has revolutionized genetic research in the past few years. Optimizing sgRNA design to improve the efficiency of target/DNA cleavage is critical to ensure the success of CRISPR screens. Results By borrowing knowledge from oligonucleotide design and nucleosome occupancy models, we systematically evaluated candidate features computed from a number of nucleic acid, thermodynamic and secondary structure models on real CRISPR datasets. Our results showed that taking into account position-dependent dinucleotide features improved the design of effective sgRNAs with area under the receiver operating characteristic curve (AUC) >0.8, and the inclusion of additional features offered marginal improvement (∼2% increase in AUC). Conclusion Using a machine-learning approach, we proposed an accurate prediction model for sgRNA design efficiency. An R package predictSGRNA implementing the predictive model is available at http://www.ams.sunysb.edu/~pfkuan/softwares.html#predictsgrna
    corecore