50 research outputs found

    CTAB-Assisted Hydrothermal Synthesis of Bi 2

    Get PDF
    Pyrochlore-type Bi2Sn2O7 (BSO) nanoparticles have been prepared by a hydrothermal method assisted with a cationic surfactant cetyltrimethylammonium bromide (CTAB). These BSO products were characterized by powder X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), and UV-visible diffuse reflectance spectroscopy (DRS). The results indicated that CTAB alters the surface parameters and the morphology and enhances the photoinduced charge separation rate of BSO. The photocatalytic degradation test using rhodamine B as a model pollutant showed that the photocatalytic activity of the BSO assisted with CTAB was two times that of the reference BSO. Close investigation revealed that the size, the band gap, the structure, and the existence of impurity level played an important role in the photocatalytic activities

    Synthesis of BiOI-TiO 2

    Get PDF
    This study was conducted to synthesize a series of nanosized BiOI-TiO2 catalysts to photodegrade Bisphenol A solution. The BiOI-TiO2 nanoparticles were synthesized in the reverse microemulsions, consisting of cyclohexane, Triton X-100, n-hexanol, and aqueous salt solutions. The synthesized particles were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface analyzer, Fourier transform-infrared spectroscopy (FT-IR), ultraviolet-visible light (UV-Vis) absorption spectra and transmission electron microscope (TEM). The photodegradation of Bisphenol A (BPA) in aqueous suspension under visible light irradiation was investigated to explore the feasibility of using the photocatalytic method to treat BPA wastewater. The effects of different molar ratios of BiOI to TiO2 on the photocatalytic activity were discussed. The experimental results revealed that the photocatalytic effect of the BiOI-TiO2 particles was superior to the commercial P25 TiO2. The BPA degradation could be approached by a pseudo-first-order rate expression. The observed reaction rate constant (kobs) was related to nanoparticles dosage and initial solution pH

    Linking life table and predation rate for evaluating temperature effects on Orius strigicollis for the biological control of Frankliniella occidentalis

    Get PDF
    IntroductionOrius spp. are generalist predators released in horticultural and agricultural systems to control thrips. Understanding the effects of temperature on the development, predation rate, and population dynamics of Orius is essential for identifying the optimal timing of Orius release for establishing an adequate population to facilitate synchrony with thrips population growth and to prevent thrips outbreaks. The biological control efficiency of natural enemies as well as predator–prey relationships can be precisely described by integrating life table parameters and the predation rate.MethodsIn this study, the demographic features of Orius strigicollis fed on 2nd instar nymphs of western flower thrips (WFT), Frankliniella occidentalis, were compared at 18.5, 23.5, 27, and 33°C using the TWOSEX-MSChart program. The CONSUME-MSChart program was used to examine predation rates under different temperatures (18.5, 23.5, and 27°C).ResultsThe results showed no significant difference in fecundity among those reared at 18.5, 23.5, and 27°C, but fecundity at these temperatures was significantly higher than that at 33°C. The intrinsic rate of increase (r), finite rate of increase (λ), and net reproduction rate (R0) were the highest at 27°C. The net predation rate (C0) and transformation rate (Qp) were significantly higher at 18.5°C (C0 = 168.39 prey/predator, Qp = 8.22) and 23.5°C (C0 = 140.49 prey/predator, Qp = 6.03) than at 27°C (C0 = 138.39 prey/predator, Qp= 3.81); however, the finite predation rate (ω) showed the opposite trend. In addition to temperature, the stage of O. strigicollis at release can affect population dynamics.DiscussionOur study showed that temperature influenced the demographic traits and predation rates of O. strigicollis. When planning a release, the stage of O. strigicollis and temperature should be taken into account to establish an adequate population for the control of WFT

    Development of attractants and repellents for Tuta absoluta based on plant volatiles from tomato and eggplant

    Get PDF
    IntroductionTuta absoluta is currently considered one of the most devastating invasive pests of solanaceous plants worldwide, causing severe damage to the tomato industry. Insects use volatile organic compounds (VOCs) to locate host plant for feeding and oviposition. Those VOCs could be developed as lures for pest monitoring and control.MethodsIn this study, the differentially accumulated VOCs between the preferred host (tomato) and non-preferred host (eggplant) were analyzed by GC–MS method, and their roles on female T. absoluta host selection and egg laying behaviors were investigated using electroantennography (EAG), olfactometer and cage experiments.ResultsA total of 39 differentially accumulated VOCs were identified in tomato and eggplant. Strong EAG signals were obtained in 9 VOCs, including 5 VOCs highly accumulated in tomato and 4 VOCs highly accumulated in eggplant. Further olfactometer bioassays showed that 4 compounds (1-nonanol, ethyl heptanoate, ethyl octanoate and o-nitrophenol) were attractive to T. absoluta females, while 5 compounds (2-phenylethanol, 2-pentylfuran, trans,trans-2,4-nonadienal, 2-ethyl-5-methylpyrazine and trans-2-nonenal) were repellent, indicating that VOCs from host plants play important roles in host plant preferences. The attractive activities of 1-nonanol and ethyl octanoate, as well as the repellent activities of trans,trans-2,4-nonadienal and trans-2-nonenal, were further confirmed in cage experiments.DiscussionIn this study, two attractants and two repellents for T. absoluta were developed from plant released VOCs. Our results could be useful to enhance the development of eco-friendly and sustainable pest management strategies for T. absoluta

    Behavioral and physiological plasticity provides insights into molecular based adaptation mechanism to strain shift in Spodoptera frugiperda

    Get PDF
    How herbivorous insects adapt to host plants is a key question in ecological and evolutionary biology. The fall armyworm, (FAW) Spodoptera frugiperda (J.E. Smith), although polyphagous and a major pest on various crops, has been reported to have a rice and corn (maize) feeding strain in its native range in the Americas. The species is highly invasive and has recently established in China. We compared behavioral changes in larvae and adults of a corn population (Corn) when selected on rice (Rice) and the molecular basis of these adaptational changes in midgut and antennae based on a comparative transcriptome analysis. Larvae of S. frugiperda reared on rice plants continuously for 20 generations exhibited strong feeding preference for with higher larval performance and pupal weight on rice than on maize plants. Similarly, females from the rice selected population laid significantly more eggs on rice as compared to females from maize population. The most highly expressed DEGs were shown in the midgut of Rice vs. Corn. A total of 6430 DEGs were identified between the populations mostly in genes related to digestion and detoxification. These results suggest that potential adaptations for feeding on rice crops, may contribute to the current rapid spread of fall armyworm on rice crops in China and potentially elsewhere. Consistently, highly expressed DEGs were also shown in antennae; a total of 5125 differentially expressed genes (DEGs) s were identified related to the expansions of major chemosensory genes family in Rice compared to the Corn feeding population. These results not only provide valuable insight into the molecular mechanisms in host plants adaptation of S. frugiperda but may provide new gene targets for the management of this pest

    Tectorigenin alleviates the apoptosis and inflammation in spinal cord injury cell model through inhibiting insulin-like growth factor-binding protein 6

    No full text
    Since tectorigenin has been reported to possess anti-inflammation, redox balance restoration, and anti-apoptosis properties, we determine to unravel whether tectorigenin has potential in alleviating spinal cord injury (SCI). Herein, PC12 cells were induced by lipopolysaccharide (LPS) to establish in vitro SCI models. The cell viability and apoptosis were detected through cell counting kit-8 and flow cytometry assays. The caspase-3/8/9 content was measured by colorimetric method. Western blot was conducted to quantify the expressions of cleaved caspse-3/8/9, IGFBP6, TLR4, IÎșBα, p-IÎșBα, RELA proto-oncogene, p65, and p-p65. Enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction were carried out to quantitate expressions of IGFBP6, interleukin-1ÎČ (IL-1ÎČ), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). SwissTargetPrediction and GSE21497 database were utilized to predict the potential therapeutic targets of tectorigenin. Comparison of IGFBP6 expression in SCI tissues and normal tissues was analyzed by GEO2R. Our study found that LPS induced the declined cell viability, elevated cell apoptosis, upregulation of caspase-3/8/9, cleaved caspase-3/8/9, IL-1ÎČ, IL-6, TNF-α, IGFBP6, and TLR4, and the activation of IÎșBα and p65 in PC12 cells. Tectorigenin reversed the above effects of LPS. IGFBP6 was predicted to be the potential therapeutic target of tectorigenin and was overexpressed in SCI tissues. Notably, IGFBP6 overexpression offset the effects of tectorigenin on PC12 cells. In conclusion, tectorigenin could alleviate the LPS-induced apoptosis, inflammation, and activation of NF-ÎșB signaling in SCI cell models via inhibiting IGFBP6

    Silencing an E3 Ubiquitin Ligase Gene <i>OsJMJ715</i> Enhances the Resistance of Rice to a Piercing-Sucking Herbivore by Activating ABA and JA Signaling Pathways

    No full text
    The RING-type E3 ubiquitin ligases play an important role in plant growth, development, and defense responses to abiotic stresses and pathogens. However, their roles in the resistance of plants to herbivorous insects remain largely unknown. In this study, we isolated the rice gene OsJMJ715, which encodes a RING-domain containing protein, and investigated its role in rice resistance to brown planthopper (BPH, Nilaparvata lugens). OsJMJ715 is a nucleus-localized E3 ligase whose mRNA levels were upregulated by the infestation of gravid BPH females, mechanical wounding, and treatment with JA or ABA. Silencing OsJMJ715 enhanced BPH-elicited levels of ABA, JA, and JA-Ile as well as the amount of callose deposition in plants, which in turn increased the resistance of rice to BPH by reducing the feeding of BPH and the hatching rate of BPH eggs. These findings suggest that OsJMJ715 negative regulates the BPH-induced biosynthesis of ABA, JA, and JA-Ile and that BPH benefits by enhancing the expression of OsJMJ715

    Bi-induced highly n-type carbon-doped InGaAsBi films grown by molecular beam epitaxy

    No full text
    Carbon-doped InGaAsBi films on InP/Fe (100) substrates have been grown by molecular beam epitaxy (MBE). It has been found that Bismuth incorporation induces extremely high n-type carbon-doped InGaAsBi films, and its electron concentration increases linearly up to 10(21) cm(-3) (highest reported to date for n-type III-V semiconductor materials) with increased CBr4 supply pressure, implying InGaAsBi to be a prospective ohmic contact material for InP-based terahertz transistors. It also has been proved by secondary ion mass spectroscopy that the alloy composition of carbon-doped InGaAsBi is altered by the preferential etching effect of CBr4, but the etching effect on the Bi content is negligible. ERNATHY CR, 1995, APPLIED PHYSICS LETTERS, V66, P163
    corecore