32 research outputs found

    Dynamics of food insecurity of families with children

    Get PDF
    Guided by family ecological theory, this paper empirically explored how family demographic, socioeconomic, and community characteristics, as well as public and government factors, are related to changes in a family\u27s food insecurity status. Using 2001 and 2003 data from the Panel Study of Income Dynamics (PSID), a multinomial logit model of food security status was estimated. About 33.16% of the families with children under age 18 that were food insecure in 2001 became food secure in 2003. Meanwhile, about 4.48% of the families who were food secure in 2001 became food insecure in 2003. Although the average food insecurity of families changed only slightly between 2001 and 2003, the status of individual families changed substantially. This report, a first examination of the dynamic interdependence of food insecurity and a variety of family ecological characteristics over time, demonstrates the critical contribution of changing family circumstances to food insecurity

    catena-Poly[[(5-phenyl-2,2′-bipyridine-κ2 N,N′)copper(I)]-μ-thio­cyanido-κ2 N:S]

    Get PDF
    The title compound, [Cu(NCS)(C16H12N2)]n, was synthesised under hydro­thermal conditions. The CuI ion shows distorted tetra­hedral geometry being coordinated by two N atoms from a 5-phenyl-2,2′-bipyridine ligand and by the N and S atoms from two different thio­cyanate anions. The CuI ions are bridged by thio­cyanide groups, forming a one-dimensional coordination polymer along the b axis. The crystal packing is through van der Waals contacts and C—H⋯π inter­actions

    Exurban and suburban forests have superior healthcare benefits beyond downtown forests

    Get PDF
    Forests in urban areas provide great healthcare benefits to citizens, but it is less well known whether this benefit is related to different geographical spaces. We selected exurban forest, suburban forest, downtown forest, and urban control in Guangzhou, China to analyze the change characteristics of negative air ion concentration (NAIC), air oxygen content (AOC), and human comfort index (HCI). Based on Criteria Importance Through Intercriteria Correlation (CRITIC) method, the urban forest comprehensive healthcare index (UFCHI) was established. Finally, the evaluation criteria for UFCHI were identified by cluster analysis. The results demonstrated that (1) The NAIC in exurban forest (2,713 ± 1,573 ions/cm3) and suburban forest (2,147 ± 923 ions/cm3) was evidently better than downtown forest (1,130 ± 255 ions/cm3) and urban control (531 ± 162 ions/cm3). (2) The AOC was in the order of exurban forest (21.17 ± 0.38%) > suburban forest (21.13 ± 0.30%) > downtown forest (21.10 ± 0.16%) > urban control (20.98 ± 0.12%). (3) The HCI in urban control (5.56 ± 2.32) and downtown forest (5.15 ± 1.80) is higher than suburban forest (4.02 ± 1.53) and exurban forest (3.71 ± 1.48). (4) The UFCHI in exurban forest (1.000), suburban forest (0.790), and downtown forest (0.378) were beneficial to human health to some extent, while urban control (0.000) was at Level IV, having no healthcare benefit. Except in winter, the UFCHI in exurban forest and suburban forest were all at Level II and above; while downtown forest and urban control were all at Level III and below at all seasons. Overall, urban forests in the exurbs and suburbs have better healthcare benefits than those in the downtowns. Furthermore, it is recommended that urban residents visit exurban and suburban forests for forest therapy in spring, summer, and autumn

    Pathogenic Mutations Differentially Regulate Cell-to-Cell Transmission of α-Synuclein

    Get PDF
    Recent studies suggest that the cell-to-cell spread of pathological α-synuclein (α-syn) plays important roles in the development of Parkinson’s disease (PD). PD patients who carry α-syn gene mutations often have an earlier onset and more severe clinical symptoms and pathology than sporadic PD cases who carry the wild-type (WT) α-syn gene. However, the molecular mechanism by which α-syn gene mutations promote PD remains unclear. Here, we hypothesized that pathogenic mutations facilitate the intercellular transfer and cytotoxicity of α-syn, favoring an early disease onset and faster progression. We investigated the effects of eight known pathogenic mutations in human α-syn (A18T, A29S, A30P, E46K, H50Q, G51D, A53E, and A53T) on its pathological transmission in terms of secretion, aggregation, intracellular level, cytotoxicity, seeding, and induction of neuroinflammation in SH-SY5Y neuroblastoma cells, cultured rat neurons, and microglia, and the rat substantia nigra pars compacta. We found that 2 of the 8 mutations (H50Q and A53T) significantly increased α-syn secretion while 6 mutations (A18T, A29S, A30P, G51D, A53E, and E46K) tended to enhance it. In vitroα-syn aggregation experiments showed that H50Q promoted while G51D delayed aggregation most strongly. Interestingly, 3 mutations (E46K, H50Q, and G51D) greatly increased the intracellular α-syn level when cultured cells were treated with preformed α-syn fibrils (PFFs) compared with the WT, while the other 5 had no effect. We also demonstrated that H50Q, G51D, and A53T PFFs, but not E46K PFFs, efficiently seeded in vivo and acutely induced neuroinflammation in rat substantia nigra pars compacta. Our data indicate that pathogenic mutations augment the prion-like spread of α-syn at different steps and blockade of this pathogenic propagation may serve as a promising therapeutic intervention for PD

    Poly[penta­kis­(μ-cyanido-κ2 N:C)tris­(5-phenyl-2,2′-bipyridine-κ2 N,N′)penta­copper(I)]

    Get PDF
    The hydro­thermal reaction of Cu(acetate)2 and K3[Fe(CN)6] with 5-phenyl-2,2′-bipyridine (5-ph-2,2′-bpy) in water yields the polymeric title complex, [Cu5(CN)5(C16H12N2)3]n, which consists of ribbons along the a axis, constructed from 26-membered {Cu10(CN)8} rings. In these rings, the metal atoms are bridged by cyanide groups, except for one close Cu⋯Cu contact [2.7535 (12) Å], which can be considered as ligand-unsupported. Within the rings, one Cu atom has a distorted tetra­hedral geometry through the coordination to two N atoms from 5-ph-2,2′-bpy and two N/C atoms from two cyanide groups. Two Cu atoms have a trigonal planar environment being coordinated by three cyanide groups and two other Cu atoms have a distorted square planar geometry through coordination to two N atoms from 5-ph-2,2′-bpy and two N/C atoms from two cyanide groups

    Dynamics of food insecurity of families with children

    No full text
    Guided by family ecological theory, this paper empirically explored how family demographic, socioeconomic, and community characteristics, as well as public and government factors, are related to changes in a family's food insecurity status. Using 2001 and 2003 data from the Panel Study of Income Dynamics (PSID), a multinomial logit model of food security status was estimated. About 33.16% of the families with children under age 18 that were food insecure in 2001 became food secure in 2003. Meanwhile, about 4.48% of the families who were food secure in 2001 became food insecure in 2003. Although the average food insecurity of families changed only slightly between 2001 and 2003, the status of individual families changed substantially. This report, a first examination of the dynamic interdependence of food insecurity and a variety of family ecological characteristics over time, demonstrates the critical contribution of changing family circumstances to food insecurity.</p

    A multimodal hybrid parallel network intrusion detection model

    No full text
    With the rapid growth of Internet data traffic, the means of malicious attack become more diversified. The single modal intrusion detection model cannot fully exploit the rich feature information in the massive network traffic data, resulting in unsatisfactory detection results. To address this issue, this paper proposes a multimodal hybrid parallel network intrusion detection model (MHPN). The proposed model extracts network traffic features from two modalities: the statistical information of network traffic and the original load of traffic, and constructs appropriate neural network models for each modal information. Firstly, a two-branch convolutional neural network is combined with Long Short-Term Memory (LSTM) network to extract the spatio-temporal feature information of network traffic from the original load mode of traffic, and a convolutional neural network is used to extract the feature information of traffic statistics. Then, the feature information extracted from the two modalities is fused and fed to the CosMargin classifier for network traffic classification. The experimental results on the ISCX-IDS 2012 and CIC-IDS-2017 datasets show that the MHPN model outperforms the single-modal models and achieves an average accuracy of 99.98 % \% . The model also demonstrates strong robustness and a positive sample recognition rate

    Mechanisms of action of Fu Fang Gang Liu liquid in treating condyloma acuminatum by network pharmacology and experimental validation

    No full text
    Abstract Background Condyloma acuminatum (CA) is a sexually transmitted disease characterized by the anomalous proliferation of keratinocytes caused by human papillomavirus (HPV) infection. Fu Fang Gang Liu liquid (FFGL) is an effective externally administered prescription used to treat CA; however, its molecular mechanism remains unclear. This study aimed to identify and experimentally validate the major active ingredients and prospective targets of FFGL. Methods Network pharmacology, transcriptomics, and enrichment analysis were used to identify the active ingredients and prospective targets of FFGL, which were confirmed through subsequent experimental validation using mass spectrometry, molecular docking, western blotting, and in vitro assays. Results The network pharmacology analysis revealed that FFGL contains a total of 78 active compounds, which led to the screening of 610 compound-related targets. Among them, 59 overlapped with CA targets and were considered to be targets with potential therapeutic effects. The protein–protein interaction network analysis revealed that protein kinase B (Akt) serine/threonine kinase 1 was a potential therapeutic target. To further confirm this result, we performed ribonucleic acid sequencing (RNA-seq) assays on HPV 18+ cells after FFGL exposure and conducted enrichment analyses on the differentially expressed genes that were screened. The enrichment analysis results indicated that the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway may be a key pathway through which FFGL exerts its effects. Further in vitro experiments revealed that FFGL significantly inhibited the activity of HPV 18+ cells and reduced PI3K and Akt protein levels. A rescue experiment indicated that the reduction in cell viability induced by FFGL was partially restored after the administration of activators of the PI3K/Akt pathway. We further screened two active components of FFCL that may be efficacious in the treatment of CA: periplogenin and periplocymarin. The molecular docking experiments showed that these two compounds exhibited good binding activity to Akt1. Conclusion FFGL reduced HPV 18+ cell viability by inhibiting key proteins in the PI3K/Akt pathway; this pathway may represent an essential mechanism through which FFGL treats CA. Periplogenin and periplocymarin may play a significant role in this process

    Transcriptional Regulation of Gene Expression by microRNAs as Endogenous Decoys of Transcription Factors

    No full text
    Background/Aims: MicroRNAs (miRNAs) are known to produce post-transcriptional repression of gene expression. In light of the ability of decoy oligodeocynucleotides (ODNs) to sequestrate transcription factors (TFs) and the similar double-stranded structure between decoy ODNs and miRNAs, we proposed that miRNAs might act as endogenous decoy molecules to produce transcriptional regulation of gene expression. Methods: Quantitative real-time RT-PCR analysis was used to measure the changes of miRNA and mRNA expression. Luciferase reporter gene activity assay was used to investigate the functional interaction between miRNAs and TFs. Electrophoresis mobility shift assay (EMSA) and modified chromatin immunoprecipitation assay (ChIP) were utilized to investigate the physical interactions between miRNAs and TFs. MTT cell viability assay and cellular DNA fragmentation ELISA were used to study apoptotic cell death. Results: We presented here that miRNAs could regulate, either negatively or positively, gene expression at the transcriptional level through its decoy-like actions and this mechanism operates under physiological conditions to produce cellular functions. We identified the putative cis-elements for transcriptional factors NF-&#954;B and NFAT in the mature miR-939 and miR-376a, respectively. We experimentally established the ability of these miRNAs to physically bind their respective target TFs, using EMSA and ChIP methods. We then utilized the luciferase reporter gene assay to characterize the specific regulation of luciferase gene activities by miR-939/pre-miR-939:NF-&#954;B or miR-376a/pre-miR-376a:NFAT interactions. Moreover, miR-939 and miR-376a produced transcriptional regulation of endogenous genes Bcl-xL and FasL/miR-26 that are the transcriptional targets for NF-kB and NFAT, respectively, but are not post-transcriptional targets for these two miRNAs. Finally, interference of these miRNAs with NF-&#954;B and NFAT demonstrated clear phenotypes at the cellular level as manifested by the regulation of neuroblastoma cell death by miR-939 and miR-376a. Conclusion: Our study identified a novel non-canonical mechanism of miRNAs and suggests that when considering the cellular function of miRNAs the decoy-like mechanism for transcriptional regulation (activation or repression) should be taken into account

    Nightside Ionospheric Structure and Composition on Mars Driven by Energetic Electron Precipitation

    No full text
    Ionospheric chemistry plays an unexpectedly important role in the evolution of planetary habitability. This study is dedicated to a detailed modeling of the nightside Martian ionospheric structure and composition, a topic that has been poorly explored due to the absence of relevant measurements, but now becomes tractable owing to the unprecedented measurements made by the Mars Atmosphere and Volatile Evolution. Two-stream kinetic calculations and time-dependent fluid calculations are coupled to derive the nightside density profiles at 100–300 km for a large number of ion species, assuming solar wind electron precipitation as the only viable ionizing source in the ideal nonmagnetized atmosphere. Our calculations indicate the presence of a well-defined ionospheric peak at 146 km with a peak density of 8500 cm ^−3 , as driven by the strong atmospheric “absorption” of precipitating electrons at low altitudes. The distribution of nonterminal species is roughly under chemical equilibrium below 170 km, whereas for terminal species such as NO ^+ and HCO ^+ , diffusion is effective at essentially all altitudes, in direct contrast to the dayside behavior. In the more realistic magnetized atmosphere, the ionospheric peak seldom exists due to the patchiness of electron precipitation. In particular, our model results agree fairly well with the MAVEN measurements, especially in view of the coincidence between electron depletion and thermal plasma void seen along many MAVEN orbits. Compared to the dayside, the nightside ionospheric composition has a much higher proportion of NO ^+ and lower proportion of CO _2 ^+ , likely indicative of nightside enhancement of atmospheric O and N
    corecore