59 research outputs found

    Mortality, Enzymatic Antioxidant Activity and Gene Expression of Cabbage Aphid (Brevicoryne brassicae L.) in Response to Trichoderma longibrachiatum T6

    Get PDF
    Aphids are one of the most common insect pests in greenhouse and field crops worldwide, causing significant crop yields and economic losses. The objective of this study was to determine the mortality, enzymatic antioxidant activity and gene expression of cabbage aphids (Brevicoryne brassicae L.) in response to Trichoderma longibrachiatum T6 (T6) at different time points from Day 1 to 7 after inoculation. Our results showed that the highest mortality of B. brassicae was observed on Day 7 at a concentration of 1 × 108 spores ml−1 (73.31%) after inoculation with T6 compared with the control on Day 7 (11.51%). The activities of the enzymes superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), ascorbate peroxidase (APX), glutathione peroxidase (GPX) and glutathione S-transferase (GST) were increased by 52.98%, 44.77%, 48.26%, 49.39%, 45.13% and 39.67%, respectively on Day 3 after inoculation with T6 compared to the control. Howerver increased days post treatment (dpt) decreased the activities of SOD, POD, CAT, APX, GPX and GST enzymes by 20.79%, 21.05%, 13.75%, 20.45%, 25.38%, and 19.76% repectively on Day 7 compared to control. The transcript levels of SOD, POD, CAT, GPX, and GST genes were increased by 10.87, 9.87, 12.77, 6.22 and 4.07 respectively at Day 3 after inoculation with T6 in comparison to the control. However, the SOD, POD, CAT, GPX, and GST transcription levels decreased by 0.43, 0.44, 0.35, 0.52 and 0.47 respectively, compared to control at Day 7. Our results suggest that the T6 strain has a potential effect on the antioxidant activity and mortality of B. brassicae and therefore could be used as a natural biocontrol agent against B. brassicae in the future

    Secretory leukocyte protease inhibitor as a novel predictive biomarker in patients with diabetic kidney disease

    Get PDF
    BackgroundSecretory leukocyte protease inhibitor (SLPI) is a multifunctional protein involved in the chronic inflammatory process, implicated in the pathogenesis of diabetic kidney disease (DKD). However, its potential as a diagnostic and prognostic biomarker of DKD has yet to be evaluated. This study explored the clinical utility of SLPI in the diagnosis and prognosis of renal endpoint events in patients with DKD.MethodsA multi-center cross-sectional study comprised of 266 patients with DKD and a predictive cohort study comprised of 120 patients with stage IV DKD conducted between December 2016 and January 2022. The clinical parameters were collected for statistical analysis, a multivariate Cox proportional hazards model was used to evaluate the independent risk factors for renal endpoints.ResultsSerum SLPI levels gradually increased with DKD progression (p<0.01). A significant correlation was observed between serum SLPI levels and renal function in patients with DKD. The mean follow-up duration in this cohort study was 2.32 ± 1.30 years. Multivariate Cox regression analysis showed SLPI levels≄51.61ng/mL (HR=2.95, 95% CI[1.55, 5.60], p<0.01), 24h urinary protein levels≄3500 mg/24h (HR=3.02, 95% CI[1.66, 5.52], p<0.01), Alb levels<30g/l (HR=2.19, 95% CI[1.12, 4.28], p<0.05), HGB levels<13g/dl (HR=3.18, 95% CI[1.49, 6.80], p<0.01), and urea levels≄7.1 mmol/L (HR=8.27, 95% CI[1.96, 34.93], p<0.01) were the independent risk factors for renal endpoint events in DKD patients.ConclusionsSerum SLPI levels increased with DKD progression and were associated with clinical parameters of DKD. Moreover, elevated SLPI levels showed potential prognostic value for renal endpoint events in individuals with DKD. These findings validate the results of previous studies on SLPI in patients with DKD and provide new insights into the role of SLPI as a biomarker for the diagnosis and prognosis of DKD that require validation

    Seed Treatment with Trichoderma longibrachiatum T6 Promotes Wheat Seedling Growth under NaCl Stress Through Activating the Enzymatic and Nonenzymatic Antioxidant Defense Systems

    No full text
    Salt stress is one of the major abiotic stresses limiting crop growth and productivity worldwide. Species of Trichoderma are widely recognized for their bio-control abilities, but little information is regarding to the ability and mechanisms of their promoting plant growth and enhancing plant tolerance to different levels of salt stress. Hence, we determined (i) the role of Trichoderma longibrachiatum T6 (TL-6) in promoting wheat (Triticum aestivum L.) seed germination and seedling growth under different levels of salt stress, and (ii) the mechanisms responsible for the enhanced tolerance of wheat to salt stress by TL-6. Wheat seeds treated with or without TL-6 were grown under different levels of salt stress in controlled environmental conditions. As such, the TL-6 treatments promoted seed germination and increased the shoot and root weights of wheat seedlings under both non-stress and salt-stress conditions. Wheat seedlings with TL-6 treatments under different levels of NaCl stress increased proline content by an average of 11%, ascorbate 15%, and glutathione 28%; and decreased the contents of malondialdehyde (MDA) by an average of 19% and hydrogen peroxide (H2O2) 13%. The TL-6 treatments induced the transcriptional level of reactive oxygen species (ROS) scavenging enzymes, leading to the increases of glutathione s-transferase (GST) by an average of 17%, glutathione peroxidase (GPX) 16%, ascorbate peroxidase (APX) 17%, glutathione reductase (GR) 18%, dehydroascorbate reductase (DHAR) 5%. Our results indicate that the beneficial strain of TL-6 effectively scavenged ROS under NaCl stress through modulating the activity of ROS scavenging enzymes, regulating the transcriptional levels of ROS scavenging enzyme gene expression, and enhancing the nonenzymatic antioxidants in wheat seedling in response to salt stress. Our present study provides a new insight into the mechanisms of TL-6 can activate the enzymatic and nonenzymatic antioxidant defense systems and enhance wheat seedling tolerance to different levels of salt stress at physiological, biochemical and molecular levels

    Job Opportunity Finding by Text Classification

    No full text

    Mechanisms of the IAA and ACC-deaminase producing strain of Trichoderma longibrachiatum T6 in enhancing wheat seedling tolerance to NaCl stress

    No full text
    Abstract Background Trichoderma species, a class of plant beneficial fungi, may provide opportunistic symbionts to induce plant tolerance to abiotic stresses. Here, we determined the possible mechanisms responsible for the indole acetic acid (IAA) and 1-aminocyclopropane-1-carboxylate-deaminase (ACC-deaminase) producing strain of Trichoderma longibrachiatum T6 (TL-6) in promoting wheat (Triticum aestivum L.) growth and enhancing plant tolerance to NaCl stress. Results Wheat treated with or without TL-6 was grown under different levels of salt stress in controlled environmental conditions. TL-6 showed a high level of tolerance to 10 mg ml− 1 of NaCl stress and the inhibitory effect was more pronounced at higher NaCl concentrations. Under NaCl stress, the activity of ACC-deaminase and IAA concentration in TL-6 were promoted, with the activity of ACC-deaminase increased by 26% at the salt concentration of 10 mg ml− 1 and 31% at 20 mg ml− 1, compared with non-saline stress; and the concentration of IAA was increased by 10 and 7%, respectively (P < 0.05). The increased ACC-deaminase and IAA concentration in the TL-6 strain may serve as an important signal to alleviate the negative effect of NaCl stress on wheat growth. As such, wheat seedlings with the ACC-deaminase and IAA producing strain of TL-6 treatment under NaCl stress increased the IAA concentration by an average of 11%, decreased the activity of ACC oxidase (ACO) by an average of 12% and ACC synthase (ACS) 13%, and decreased the level of ethylene synthesis and the content of ACC by 12 and 22%, respectively (P < 0.05). The TL-6 treatment decreased the transcriptional level of ethylene synthesis genes expression, and increased the IAA production genes expression significantly in wheat seedlings roots; down-regulated the expression of ACO genes by an average of 9% and ACS genes 12%, whereas up-regulated the expression of IAA genes by 10% (P < 0.05). TL-6 treatments under NaCl stress decreased the level of Na+ accumulation; and increased the uptake of K+ and the ratio of K+/Na+, and the transcriptional level of Na+/H+ antiporter gene expression in both shoots and roots. Conclusions Our results indicate that the strain of TL-6 effectively promoted wheat growth and enhanced plant tolerance to NaCl stress through the increased ACC-deaminase activity and IAA production in TL-6 stain that modulate the IAA and ethylene synthesis, and regulate the transcriptional levels of IAA and ethylene synthesis genes expression in wheat seedling roots under salt stress, and minimize ionic toxicity by disturbing the intracellular ionic homeostasis in the plant cells. These biochemical, physiological and molecular responses helped promote the wheat seedling growth and enhanced plant tolerance to salt stress

    A HIERARCHICAL APPROACH FOR AUDIO STREAM SEGMENTATION AND CLASSIFICATION

    No full text
    This paper describes a hierarchical approach for fast audio stream segmentation and classification. With this approach, the audio stream is firstly segmented into audio clips by MBCR (Multiple sub-Bands spectrum Centroid relative Ratio) based histogram modeling. Then a MGM (Modified Gaussian modeling) based hierarchical classifier is adopted to put the segmented audio clips into six pre-defined categories in terms of discriminative background sounds, which is pure speech, pure music, song, speech with music, speech with noise and silence. The experiments on real TV program recordings showed that this approach has higher accuracy and recall rate for audio classification with a fast speed under noise environments

    Silica Aerogel Hybridized with Melamine-Terephthalaldehyde Polymer for In-Tube Solid-Phase Microextraction of Polycyclic Aromatic Hydrocarbons from Environment Water

    No full text
    To improve the extraction performance of the silica aerogel, a melamine-terephthalaldehyde polymer was used to hybridize silica aerogel, and the hybridized aerogel was coated on the surface of stainless steel wire to prepare a fiber-filled extraction tube through placing four wires into a polyetheretherketone tube. The tube was combined with high-performance liquid chromatography, then the online extraction and detection were established. Several polycyclic aromatic hydrocarbons (PAHs) were selected as the target analytes. Under the optimum extraction and desorption conditions, the limit of detection was as low as 3.0 ng L−1, and the linear range was 0.01–20.0 ÎŒg L−1. The enrichment factors of PAHs were in the range of 1724–2393. Three environmental water samples of mineral water, tap water and river water were analyzed by this method, and the recoveries that spiked at 1.0–10.0 ÎŒg L−1 were between 80.5–126%. It showed many advantages compared with other methods, such as better sensitivity, faster detection and online analysis

    Skeleton‐aware implicit function for single‐view human reconstruction

    No full text
    Abstract The aim is to reconstruct a complete and detailed clothed human from a single‐view input. Implicit function is suitable for this task because it represents fine shape details and varied topology. Current methods, however, often suffer from artefacts such as broken or disembodied body parts, missing details, or depth ambiguity due to the ambiguity and complexity of human articulation. The main issue observed by the authors is structure‐agnostic. To address these problems, the authors fully utilise the skinned multi‐person linear (SMPL) model and propose a method using the Skeleton‐aware Implicit Function (SIF). To alleviate the broken or disembodied body parts, the proposed skeleton‐aware structure prior makes the skeleton awareness into an implicit function, which consists of a bone‐guided sampling strategy and a skeleton‐relative encoding strategy. To deal with the missing details and depth ambiguity problems, the authors’ body‐guided pixel‐aligned feature exploits the SMPL to enhance 2D normal and depth semantic features, and the proposed feature aggregation uses the extra geometry‐aware prior to enabling a more plausible merging with less noisy geometry. Additionally, SIF is also adapted to the RGB‐D input, and experimental results show that SIF outperforms the state‐of‐the‐arts methods on challenging datasets from Twindom and Thuman3.0
    • 

    corecore