506 research outputs found
High Temperature Ferromagnetism in GaAs-based Heterostructures with Mn Delta Doping
We show that suitably-designed magnetic semiconductor heterostructures
consisting of Mn delta-doped GaAs and p-type AlGaAs layers, in which the
locally high concentration of magnetic moments of Mn atoms are controllably
overlapped with the 2-dimensional hole gas wavefunction, realized remarkably
high ferromagnetic transition temperatures (TC). Significant reduction of
compensative Mn interstitials by varying the growth sequence of the structures
followed by low temperature annealing led to high TC up to 250 K. The
heterostructure with high TC exhibited peculiar anomalous Hall effect behavior,
whose sign depends on temperature.Comment: 18 pages, 4 figure
DNA demethylation-dependent enhancement of toll-like receptor-2 gene expression in cystic fibrosis epithelial cells involves SP1-activated transcription
<p>Abstract</p> <p>Background</p> <p>The clinical course of cystic fibrosis (CF) is characterized by recurrent pulmonary infections and chronic inflammation. We have recently shown that decreased methylation of the toll-like receptor-2 (TLR2) promoter leads to an apparent CF-related up-regulation of TLR2. This up-regulation could be responsible, in part, for the CF-associated enhanced proinflammatory responses to various bacterial products in epithelial cells. However, the molecular mechanisms underlying DNA hypomethylation-dependent enhancement of TLR2 expression in CF cells remain unknown.</p> <p>Results</p> <p>The present study indicates that there is a specific CpG region (CpG#18-20), adjacent to the SP1 binding site that is significantly hypomethylated in several CF epithelial cell lines. These CpGs encompass a minimal promoter region required for basal TLR2 expression, and suggests that CpG#18-20 methylation regulates TLR2 expression in epithelial cells. Furthermore, reporter gene analysis indicated that the SP1 binding site is involved in the methylation-dependent regulation of the TLR2 promoter. Inhibition of SP1 with mithramycin A decreased TLR2 expression in both CF and 5-azacytidine-treated non-CF epithelial cells. Moreover, even though SP1 binding was not affected by CpG methylation, SP1-dependent transcription was abolished by CpG methylation.</p> <p>Conclusion</p> <p>This report implicates SP1 as a critical component of DNA demethylation-dependent up-regulation of TLR2 expression in CF epithelial cells.</p
Nontypeable Haemophilus influenzae induces COX-2 and PGE2 expression in lung epithelial cells via activation of p38 MAPK and NF-kappa B
<p>Abstract</p> <p>Background</p> <p>Nontypeable <it>Haemophilus influenzae </it>(NTHi) is an important respiratory pathogen implicated as an infectious trigger in chronic obstructive pulmonary disease, but its molecular interaction with human lung epithelial cells remains unclear. Herein, we tested that the hypothesis that NTHi induces the expression of cyclooxygenase (COX)-2 and prostaglandin E2 (PGE2) via activation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-kappa B in pulmonary alveolar epithelial cells.</p> <p>Methods</p> <p>Human alveolar epithelial A549 cells were infected with different concentrations of NTHi. The phosphorylation of p38 MAPK was detected by Western blot analysis, the DNA binding activity of NF-kappa B was assessed by electrophoretic mobility shift assay (EMSA), and the expressions of COX-1 and 2 mRNA and PGE2 protein were measured by reverse transcription-polymerase chain reaction (RT-PCR) and enzyme linked immunosorbent assay (ELISA), respectively. The roles of Toll-like receptor (TLR) 2 and TLR4, well known NTHi recognizing receptor in lung epithelial cell and gram-negative bacteria receptor, respectively, on the NTHi-induced COX-2 expression were investigated in the HEK293 cells overexpressing TLR2 and TLR4 <it>in vitro </it>and in the mouse model of NTHi-induced pneumonia by using TLR2 and TLR4 knock-out mice <it>in vivo</it>. In addition, the role of p38 MAPK and NF-kappa B on the NTHi-induced COX-2 and PGE2 expression was investigated by using their specific chemical inhibitors.</p> <p>Results</p> <p>NTHi induced COX-2 mRNA expression in a dose-dependent manner, but not COX-1 mRNA expression in A549 cells. The enhanced expression of PGE2 by NTHi infection was significantly decreased by pre-treatment of COX-2 specific inhibitor, but not by COX-1 inhibitor. NTHi induced COX-2 expression was mediated by TLR2 in the epithelial cell <it>in vitro </it>and in the lungs of mice <it>in vivo</it>. NTHi induced phosphorylation of p38 MAPK and up-regulated DNA binding activity of NF-kappa B. Moreover, the expressions of COX-2 and PGE2 were significantly inhibited by specific inhibitors of p38 MAPK and NF-kappa B. However, NTHi-induced DNA binding activity of NF-kappa B was not affected by the inhibition of p38 MAPK.</p> <p>Conclusion</p> <p>NTHi induces COX-2 and PGE2 expression in a p38 MAPK and NF-kappa B-dependent manner through TLR2 in lung epithelial cells <it>in vitro </it>and lung tissues <it>in vivo</it>. The full understanding of the role of endogenous anti-inflammatory PGE2 and its regulation will bring new insight to the resolution of inflammation in pulmonary bacterial infections.</p
Zinc Deficiency via a Splice Switch in Zinc Importer ZIP2/SLC39A2 Causes Cystic Fibrosis-Associated MUC5AC Hypersecretion in Airway Epithelial Cells
Airway mucus hyperproduction and fluid imbalance are important hallmarks of cystic fibrosis (CF), the most common life-shortening genetic disorder in Caucasians. Dysregulated expression and/or function of airway ion transporters, including cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial sodium channel (ENaC), have been implicated as causes of CF-associated mucus hypersecretory phenotype. However, the contributory roles of other substances and transporters in the regulation of CF airway pathogenesis remain unelucidated. Here, we identified a novel connection between CFTR/ENaC expression and the intracellular Zn2 + concentration in the regulation of MUC5AC, a major secreted mucin that is highly expressed in CF airway. CFTR-defective and ENaC-hyperactive airway epithelial cells specifically and highly expressed a unique, alternative splice isoform of the zinc importer ZIP2/SLC39A2 (ĪC-ZIP2), which lacks the C-terminal domain. Importantly, ĪC-ZIP2 levels correlated inversely with wild-type ZIP2 and intracellular Zn2 + levels. Moreover, the splice switch to ĪC-ZIP2 as well as decreased expression of other ZIPs caused zinc deficiency, which is sufficient for induction of MUC5AC; while ĪC-ZIP2 expression per se induced ENaC expression and function. Thus, our findings demonstrate that the novel splicing switch contributes to CF lung pathology via the novel interplay of CFTR, ENaC, and ZIP2 transporters
Carbonization and H3PO4 activation of fern Dicranopteris linearis and electrochemical properties for electric double layer capacitor electrode
Today, the worldās climate change is a growing problem, plant carbon sequestration is one of the effective ways to mitigate climate change by reducing greenhouse gases, mostly carbon gases. Dicranopteris linearis (D. linearis), a common fern species in the tropic or subtropic ecoregions, has been recently recognized as a potential feedstock to produce highly porous biochar. This study aims to enhance the specific surface area (SSA) and pore volumes of biochars derived from the D. linearis by H3PO4 activation and examine electrical properties of the activated biochars and their possible usage for the electric double-layer capacitor (EDLC) electrode. The treated raw fern was activated with H3PO4 85% by the three different mixing ratios 1:0, 1:1, and 1:3 (w/w) and then pyrolysis under N2 flow maintained at 500 Ā°C for 1 h. The performance as the electrode for an EDLC was evaluated in 1 mol Lā1 H2SO4 solution for the H3PO4-activated samples. The SSA and pore volumes were drastically increased after activation. The maximum SSA and pore volume were 1212 m2 gā1 and 1.43 cm3 gā1, respectively for the biochar activated at 400 Ā°C with a weight mixing ratio 1:3 (w/w) between the fern and H3PO4 acid while these values of the biochar at 400 Ā°C were 12 m2 gā1 and 0.02 cm3 gā1, respectively. The biochar activated at 600 Ā°C with the mixing ratio 1:1 (w/w) showed the maximum capacitance value, ca. 108 F gā1 at 1 mV sā1. The activation using H3PO4 showed a positive tendency to enhance electrochemical properties and it could be a premise toward a higher performance of EDLC from the D. linearis derived activated biochar
Expression of Toll-like receptor 2 is up-regulated in monocytes from patients with chronic obstructive pulmonary disease
BACKGROUND: Chronic obstructive pulmonary disease (COPD) is characterised by pulmonary and systemic inflammation which flare-up during episodes of acute exacerbation (AECOPD). Given the role of Toll-like receptors (TLRs) in the induction of inflammatory responses we investigated the involvement of TLRs in COPD pathogenesis. METHODS: The expression of TLR-2, TLR-4 and CD14 in monocytes was analyzed by flow cytometry. To study the functional responses of these receptors, monocytes were stimulated with peptidoglycan or lipopolysaccharide and the amounts of TNFĪ± and IL-6 secreted were determined by ELISA. RESULTS: We found that the expression of TLR-2 was up-regulated in peripheral blood monocytes from COPD patients, either clinically stable or during AECOPD, as compared to never smokers or smokers with normal lung function. Upon stimulation with TLR-2 ligand monocytes from COPD patients secreted increased amounts of cytokines than similarly stimulated monocytes from never smokers and smokers. In contrast, the expressions of TLR-4 and CD14 were not significantly different between groups, and the response to lipopolysaccharide (a TLR-4 ligand) stimulation was not significantly different either. At discharge from hospital TLR-2 expression was down-regulated in peripheral blood monocytes from AECOPD patients. This could be due to the treatment with systemic steroids because, in vitro, steroids down-regulated TLR-2 expression in a dose-dependent manner. Finally, we demonstrated that IL-6, whose plasma levels are elevated in patients, up-regulated in vitro TLR-2 expression in monocytes from never smokers. CONCLUSION: Our results reveal abnormalities in TLRs expression in COPD patients and highlight its potential relationship with systemic inflammation in these patients
Collagenous Fibroma (Desmoplastic Fibroblastoma) of the Neck Presenting with Neurological Symptoms
Collagenous fibromas are rare fibrous soft tissue tumours that usually arise in subcutaneous tissue or skeletal muscle at a variety of anatomical sites. These lesions commonly present as painless, slow-growing mobile masses. We describe a unique case of a 41-year-old woman presenting with a posterior neck swelling and longstanding history of severe ongoing pain in the right scapular region, shoulder and neck, weakness of the palmar grip and limited right lateral neck flexion and rotation. A history of trauma to the right neck in adolescence was noted. Histological analysis revealed a paucicellular lesion with spindle and stellate-shaped fibroblasts involving the cervical nerve roots, typical of collagenous fibroma. In a literature search on Medline and Pubmed, we found no reported cases of collagenous fibromas presenting with neurological symptoms. This report highlights the potential of these lesions to present with neurological symptoms due to infiltration of surrounding tissues, and that preceding trauma may contribute to the aetiology
- ā¦