73 research outputs found

    Clozapine Pharmacogenetic Studies in Schizophrenia

    Get PDF
    Clozapine is an efficacious atypical antipsychotic for treatment-refractory schizophrenia. Clinical response and appearance of adverse events vary among individual patients receiving clozapine, with genetic and non-genetic factors potentially contributing to individual variabilities. Pharmacogenetic studies investigate associations between genetic variants and drug efficacy and toxicity. To date, most pharmacogenetic studies of clozapine have been conducted through candidate gene approaches. A recent advance in technology made it possible to perform comprehensive genetic mapping underlying clinical phenotypes and outcomes, which allow novel findings beyond biological hypotheses based on current knowledge. In this paper, we will summarize the studies on clozapine pharmacogenetics that have extensively examined clinical response and agranulocytosis. While there is still limited evidence on clozapine efficacy, recent genome-wide studies provide further evidence of the involvement of the human leukocyte antigen (HLA) region in clozapine-induced agranulocytosis

    Selective cyclooxygenase-2 inhibitors show a differential ability to inhibit proliferation and induce apoptosis of colon adenocarcinoma cells

    Get PDF
    AbstractAlthough the influence of selective cyclooxygenase (COX)-2 inhibitors on the proliferation of colon adenocarcinoma cells have been the subject of much investigation, relatively little research has compared the effects of different COX-2 inhibitors. Celecoxib strongly suppressed the proliferation of COX-2 expressing HT-29 cells at 10–40 μM. NS-398 and nimesulide also inhibited cell proliferation, whereas rofecoxib, meloxicam, and etodolac did not. Only celecoxib induced apoptosis of HT-29 cells, as detected on the basis of DNA fragmentation, TUNEL positivity, and caspase-3/7 activation. DNA fragmentation was also increasd in COX-2 non-expressing cell lines (SW-480 and HCT-116) by exposure to celecoxib for 6–24 h. All six COX-2 inhibitors suppressed the production of prostaglandin E2 by HT-29 cells, suggesting that the pro-apoptotic effect of celecoxib was unrelated to inhibition of COX-2. Inactivation of Akt might explain the differential pro-apoptotic effect of these selective COX-2 inhibitors on colon adenocarcinoma cells

    Clozapine Pharmacogenetic Studies in Schizophrenia: Efficacy and Agranulocytosis

    Get PDF
    Clozapine is an efficacious atypical antipsychotic for treatment-refractory schizophrenia. Clinical response and appearance of adverse events vary among individual patients receiving clozapine, with genetic and non-genetic factors potentially contributing to individual variabilities. Pharmacogenetic studies investigate associations between genetic variants and drug efficacy and toxicity. To date, most pharmacogenetic studies of clozapine have been conducted through candidate gene approaches. A recent advance in technology made it possible to perform comprehensive genetic mapping underlying clinical phenotypes and outcomes, which allow novel findings beyond biological hypotheses based on current knowledge. In this paper, we will summarize the studies on clozapine pharmacogenetics that have extensively examined clinical response and agranulocytosis. While there is still limited evidence on clozapine efficacy, recent genome-wide studies provide further evidence of the involvement of the human leukocyte antigen (HLA) region in clozapine-induced agranulocytosis

    Methylation Analysis in Treatment-Resistant Schizophrenia

    Get PDF
    Schizophrenia is a mental illness that involves both genetic and environmental factors. Clozapine, an atypical antipsychotic, is a well-established therapy for treatment-resistant schizophrenia. In this study, we focused on a set of monozygotic twins with treatment-resistant schizophrenia in which one twin effectively responded to clozapine treatment and the other did not. Our previous study generated neurons from induced pluripotent stem (iPS) cells derived from these patients and compared the transcriptome profiles between mock- and clozapine-treated neurons. In this study, we performed genome-wide DNA methylation profiling to investigate the mechanisms underlying gene expression changes. First, we extracted the differentially methylated sites from each twin based on statistical analysis. Then, we combined the DNA methylation profiling with transcriptome profiling from our previous RNA-seq data. Among the genes with altered methylation and expression, we found the different proportions of the genes related to neuronal and synaptic functions between the clozapine responder and non-responder (35.7 and 6.7%, respectively). This trend was observed even when the basal differences between the responder and non-responder was excluded. These results suggest that effective clozapine action may correct the abnormalities of neuronal and synapse functions in schizophrenia via changes in methylation

    Plasma Levels of Soluble Tumor Necrosis Factor Receptor 2 (sTNFR2) Are Associated with Hippocampal Volume and Cognitive Performance in Patients with Schizophrenia

    Get PDF
    Background: An imbalance in the inflammatory tumor necrosis factor system, including soluble tumor necrosis factor receptor 2 (sTNFR2), may contribute to the pathophysiology of schizophrenia. Methods: We measured the plasma levels of sTNFR2 in 256 healthy controls and 250 patients with schizophrenia including antipsychotic drug-free patients and treatment-resistant patients. We also explored the possible association between plasma sTNFR2 levels and cognitive performance in healthy controls and patients with schizophrenia using the Wechsler Adult Intelligence Scale, Third Edition, the Wechsler Memory Scale-Revised, and the Rey Auditory Verbal Learning Test. An association between plasma sTNFR2 levels and hippocampal volume in controls and patients with schizophrenia was also investigated via MRI. Results: We found that the plasma levels of sTNFR2 were significantly higher in patients with schizophrenia, including both antipsychotic drug-free patients and treatment-resistant patients. We found a significant negative association between plasma sTNFR2 levels and cognitive performance in controls and patients with schizophrenia. Hippocampal volume was also negatively associated with plasma sTNFR2 levels in patients with schizophrenia. Conclusion: Together, these convergent data suggest a possible biological mechanism for schizophrenia, whereby increased sTNFR2 levels are associated with a smaller hippocampal volume and cognitive impairment

    Plasma levels of matrix metalloproteinase‐9 (MMP‐9) are associated with cognitive performance in patients with schizophrenia

    Get PDF
    Aim: Matrix metalloproteinase‐9 (MMP‐9) has been shown to modulate synaptic plasticity and may contribute to the pathophysiology of schizophrenia. This study investigated the peripheral levels of MMP‐9 and its association with cognitive functions in patients with schizophrenia to see the possible involvement of MMP‐9 in pathophysiology of schizophrenia, especially in cognitive decline. Methods: We measured the plasma levels of MMP‐9 in 257 healthy controls and 249 patients with schizophrenia, including antipsychotic drug–free patients. We also explored the possible association between plasma MMP‐9 levels and cognitive performance in healthy controls and patients with schizophrenia using the Wechsler Adult Intelligence Scale, Third Edition (WAIS‐ III), the Wechsler Memory Scale‐Revised (WMS‐R), and the Rey Auditory Verbal Learning Test (AVLT). Results: We found that the plasma levels of MMP‐9 were significantly higher in patients with schizophrenia, including antipsychotic drug–free patients, than in healthy controls. We found a significant negative association between plasma MMP‐9 levels and cognitive performance in controls and patients with schizophrenia. Conclusion: Together, these convergent data suggest a possible biological mechanism for schizophrenia, whereby increased MMP‐9 levels are associated with cognitive impairment

    Sex differences of leukocytes DNA methylation adjusted for estimated cellular proportions

    Get PDF
    Background: DNA methylation, which is most frequently the transference of a methyl group to the 5-carbon position of the cytosine in a CpG dinucleotide, plays an important role in both normal development and diseases. To date, several genome-wide methylome studies have revealed sex-biased DNA methylation, yet no studies have investigated sex differences in DNA methylation by taking into account cellular heterogeneity. The aim of the present study was to investigate sex-biased DNA methylation on the autosomes in human blood by adjusting for estimated cellular proportions because cell-type proportions may vary by sex. Methods: We performed a genome-wide DNA methylation profiling of the peripheral leukocytes in two sets of samples, a discovery set (49 males and 44 females) and a replication set (14 males and 10 females) using Infinium HumanMethylation450 BeadChips for 485,764 CpG dinucleotides and then examined the effect of sex on DNA methylation with a multiple linear regression analysis after adjusting for age, the estimated 6 cell-type proportions, and the covariates identified in a surrogate variable analysis. Results: We identified differential DNA methylation between males and females at 292 autosomal CpG site loci in the discovery set (Bonferroni-adjusted p < 0.05). Of these 292 CpG sites, significant sex differences were also observed at 98 sites in the replication set (p < 0.05). Conclusions: These findings provided further evidence that DNA methylation may play a role in the differentiation or maintenance of sexual dimorphisms. Our methylome mapping of the effects of sex may be useful to understanding the molecular mechanism involved in both normal development and diseases. © 2015 Inoshita et al

    Differential gene expression profiles in neurons generated from lymphoblastoid B-cell line-derived iPS cells from monozygotic twin cases with treatment-resistant schizophrenia and discordant responses to clozapine

    Get PDF
    Schizophrenia is a chronic psychiatric disorder with complex genetic and environmental origins. While many antipsychotics have been demonstrated as effective in the treatment of schizophrenia, a substantial number of schizophrenia patients are partially or fully unresponsive to the treatment. Clozapine is the most effective antipsychotic drug for treatment-resistant schizophrenia; however, clozapine has rare but serious side-effects. Furthermore, there is inter-individual variability in the drug response to clozapine treatment. Therefore, the identification of the molecular mechanisms underlying the action of clozapine and drug response predictors is imperative. In the present study, we focused on a pair of monozygotic twin cases with treatment-resistant schizophrenia, in which one twin responded well to clozapine treatment and the other twin did not. Using induced pluripotent stem (iPS) cell-based technology, we generated neurons from iPS cells derived from these patients and subsequently performed RNA-sequencing to compare the transcriptome profiles of the mock or clozapine-treated neurons. Although, these iPS cells similarly differentiated into neurons, several genes encoding homophilic cell adhesion molecules, such as protocadherin genes, showed differential expression patterns between these two patients. These results, which contribute to the current understanding of the molecular mechanisms of clozapine action, establish a new strategy for the use of monozygotic twin studies in schizophrenia research

    Decreased serum pyridoxal levels in schizophrenia : meta-analysis and Mendelian randomization analysis

    Get PDF
    Background: Alterations in one-carbon metabolism have been associated with schizophrenia, and vitamin B6 is one of the key components in this pathway. Methods: We first conducted a case–control study of serum pyridoxal levels and schizophrenia in a large Japanese cohort (n = 1276). Subsequently, we conducted a meta-analysis of association studies (n = 2125). Second, we investigated whether rs4654748, which was identified in a genome-wide association study as a vitamin B6-related single nucleotide polymorphism, was genetically implicated in patients with schizophrenia in the Japanese population (n = 10 689). Finally, we assessed the effect of serum pyridoxal levels on schizophrenia risk using a Mendelian randomization (MR) approach. Results: Serum pyridoxal levels were significantly lower in patients with schizophrenia than in controls, not only in our cohort, but also in the pooled data set of the meta-analysis of association studies (standardized mean difference –0.48, 95% confidence interval [CI] –0.57 to –0.39, p = 9.8 × 10–24). We failed to find a significant association between rs4654748 and schizophrenia. Furthermore, an MR analysis failed to find a causal relationship between pyridoxal levels and schizophrenia risk (odds ratio 0.99, 95% CI 0.65–1.51, p = 0.96). Limitations: Food consumption and medications may have affected serum pyridoxal levels in our cross-sectional study. Sample size, number of instrumental variables and substantial heterogeneity among patients with schizophrenia are limitations of an MR analysis. Conclusion: We found decreased serum pyridoxal levels in patients with schizophrenia in this observational study. However, we failed to obtain data supporting a causal relationship between pyridoxal levels and schizophrenia risk using the MR approach

    Association between the examination rate of treatment-resistant schizophrenia and the clozapine prescription rate in a nationwide dissemination and implementation study

    Get PDF
    Background: The decision to initiate clozapine treatment should be made on an individual basis and may be closely related to the early detection of treatment-resistant schizophrenia (TRS), although there is evidence that the early use of clozapine results in a better response to treatment. Therefore, we investigated the relationship between the examination rate of TRS and the prescription rate of clozapine. Methods: After attending a 1-day educational program on schizophrenia based on the "Guidelines for the Pharmacological Treatment of Schizophrenia," we asked the participating facilities to submit records of whether or not TRS was evaluated for each patient. We calculated the clozapine prescription rate from the schizophrenic patients prescribed clozapine and all of the schizophrenic patients. Forty-nine facilities in 2017 were included in the study. Results: There were dichotomous distributions in the examination rate of TRS and a non-normal distribution in the prescription rate of clozapine. There was a significant correlation between the prescription rate of clozapine and the examination rate of TRS (r s = 0.531, P = 1.032 × 10−4). A significant difference was found in the prescription rate of clozapine between the three groups of facilities according to the examination rate of TRS. Conclusion: As a preliminary problem for the use of clozapine, in Japan, the examination rate of TRS varies, and there are many facilities that typically do not consider the possibility of TRS; this trend leads to a low rate of clozapine use. Clearly, further clinician training is needed for the early detection and appropriate management of TRS that includes an explanation of TRS and how to introduce clozapine therapy to patients and their families
    corecore