1 research outputs found

    On the minima and convexity of Epstein Zeta function

    Full text link
    Let Zn(s;a1,...,an)Z_n(s; a_1,..., a_n) be the Epstein zeta function defined as the meromorphic continuation of the function \sum_{k\in\Z^n\setminus\{0\}}(\sum_{i=1}^n [a_i k_i]^2)^{-s}, \text{Re} s>\frac{n}{2} to the complex plane. We show that for fixed sn/2s\neq n/2, the function Zn(s;a1,...,an)Z_n(s; a_1,..., a_n), as a function of (a1,...,an)(R+)n(a_1,..., a_n)\in (\R^+)^n with fixed i=1nai\prod_{i=1}^n a_i, has a unique minimum at the point a1=...=ana_1=...=a_n. When i=1nci\sum_{i=1}^n c_i is fixed, the function (c1,...,cn)Zn(s;ec1,...,ecn)(c_1,..., c_n)\mapsto Z_n(s; e^{c_1},..., e^{c_n}) can be shown to be a convex function of any (n1)(n-1) of the variables {c1,...,cn}\{c_1,...,c_n\}. These results are then applied to the study of the sign of Zn(s;a1,...,an)Z_n(s; a_1,..., a_n) when ss is in the critical range (0,n/2)(0, n/2). It is shown that when 1n91\leq n\leq 9, Zn(s;a1,...,an)Z_n(s; a_1,..., a_n) as a function of (a1,...,an)(R+)n(a_1,..., a_n)\in (\R^+)^n, can be both positive and negative for every s(0,n/2)s\in (0,n/2). When n10n\geq 10, there are some open subsets In,+I_{n,+} of s(0,n/2)s\in(0,n/2), where Zn(s;a1,...,an)Z_{n}(s; a_1,..., a_n) is positive for all (a1,...,an)(R+)n(a_1,..., a_n)\in(\R^+)^n. By regarding Zn(s;a1,...,an)Z_n(s; a_1,..., a_n) as a function of ss, we find that when n10n\geq 10, the generalized Riemann hypothesis is false for all (a1,...,an)(a_1,...,a_n).Comment: 27 page
    corecore