38 research outputs found

    Rethinking the Properties of the Quark-Gluon Plasma at T∌TcT\sim T_c

    Full text link
    We argue that although at asymptotically high temperatures the QGP in bulk behaves as a gas of weakly interacting quasiparticles (modulo long-range magnetism), at temperatures up to few times the critical temperature TcT_c it displays different properties. If the running of the QCD coupling constant continues in the Coulomb phase till the screening length scale, it reaches the strong coupling treshold αs(mD)∌1\alpha_s(m_D)\sim 1. As a result, the Coulomb phase supports weakly bound Coulombic s-wave cˉc\bar c c, light quark and even gggg states. The existence of shallow bound states dramatically increases the quasiparticle rescattering at low energies, reducing the viscosity and thereby explaining why heavy ion collisions at RHIC exhibit robust collective phenomena. In conformal gauge theories at finite temperature the Coulomb binding persists further in the strong coupling regime, as found for N=4{\cal N}=4 SUSY YM in the Maldacena regime.Comment: v2 version have one more figure and one more reference, v3 is the same as v2 except a double-page format (the v2 had corrupted last lines on the page

    Strongly Coupled Quark Gluon Plasma (SCQGP)

    Full text link
    We propose that the reason for the non-ideal behavior seen in lattice simulation of quark gluon plasma (QGP) and relativistic heavy ion collisions (URHICs) experiments is that the QGP near T_c and above is strongly coupled plasma (SCP), i.e., strongly coupled quark gluon plasma (SCQGP). It is remarkable that the widely used equation of state (EoS) of SCP in QED (quantum electrodynamics) very nicely fits lattice results on all QGP systems, with proper modifications to include color degrees of freedom and running coupling constant. Results on pressure in pure gauge, 2-flavors and 3-flavors QGP, are all can be explained by treating QGP as SCQGP as demonstated here.Energy density and speed of sound are also presented for all three systems. We further extend the model to systems with finite quark mass and a reasonably good fit to lattice results are obtained for (2+1)-flavors and 4-flavors QGP. Hence it is the first unified model, namely SCQGP, to explain the non-ideal QGP seen in lattice simulations with just two system dependent parameters.Comment: Revised with corrections and new results, Latex file (11 pages), postscript file of 7 figure

    Screening of the topological charge in a correlated instanton vacuum

    Get PDF
    Screening of the topological charge due to he fermion-induced interactions is an important phenomenon, closely related with the resolution of the strong CP and U(1) problems. We study the mechanism of such screening in a 'correlated instanton vacuum', as opposed to the 'random' one. Both scalar and pseudoscalar gluonic correlators are analyzed by means of an observable that minimizes finite size effects. Screening of the topological charge is established. This allows us to calculate the ηâ€Č\eta' mass without having to invert the Dirac operator. We suggest that this method might be used in lattice QCD calculations as well. Our results for the screening of the topological charge are in agreement with the chiral Ward identities, and the scalar gluonic correlator satisfies a low energy theorem first derived by Novikov et al. \cite{Novikov-etal}. We also propose to evaluate the topological susceptibility in the Witten-Veneziano formula not in an infinite box in an world withoutwithout fermions but in an infinitesimal box in a world withwith fermions.Comment: 22 pages + 5 postscript figures, SUNY-NTG/94-25. Corrected LATEX erro

    The Instanton Molecule Liquid and "Sticky Molasses" Above T_c

    Full text link
    The main objective of this work is to explore the evolution in the structure of the quark-antiquark bound states in going down in the chirally restored phase from the so-called "zero binding points" T_zb to the QCD critical temperature T_c at which the Nambu-Goldstone and Wigner-Weyl modes meet. In doing this, we adopt the idea recently introduced by Shuryak and Zahed for charmed cˉc\bar c c, light-quark qˉq\bar q q mesons π,σ,ρ,A1\pi, \sigma, \rho, A_1 and gluons that at T_zb, the quark-antiquark scattering length goes through infinity at which conformal invariance is restored, thereby transforming the matter into a near perfect fluid behaving hydrodynamically, as found at RHIC. We show that the binding of these states is accomplished by the combination of (i) the color Coulomb interaction, (ii) the relativistic effects, and (iii) the interaction induced by the instanton-anti-instanton molecules. The spin-spin forces turned out to be small. While near T_zb all mesons are large-size nonrelativistic objects bound by Coulomb attraction, near T_c they get much more tightly bound, with many-body collective interactions becoming important and making the σ\sigma and π\pi masses approach zero (in the chiral limit). The wave function at the origin grows strongly with binding, and the near-local four-Fermi interactions induced by the instanton molecules play an increasingly more important role as the temperature moves downward toward T_c.Comment: Contribution to QM2004 proceedings, 4 page

    The instanton liquid in QCD at zero and finite temperature

    Full text link
    In this paper we study the statistical mechanics of the instanton liquid in QCD. After introducing the partition function as well as the gauge field and quark induced interactions between instantons we describe a method to calculate the free energy of the instanton system. We use this method to determine the equilibrium density and the equation of state from numerical simulations of the instanton ensemble in QCD for various numbers of flavors. We find that there is a critical number of flavors above which chiral symmetry is restored in the groundstate. In the physical case of two light and one intermediate mass flavor the system undergoes a chiral phase transition at T≃140T\simeq 140 MeV. We show that the mechanism for this transition is a rearrangement of the instanton liquid, going from a disordered, random, phase at low temperatures to a strongly correlated, molecular, phase at high temperature. We also study the behavior of mesonic susceptibilities near the phase transition.Comment: 50 pages, revtex, 16 figures, uuencode

    A Comment on Conical Flow Induced by Heavy-Quark Jets

    Full text link
    The suppression of high transverse momentum particles, recently discovered at RHIC, is commonly interpreted as due to parton energy loss. In high energy nuclear collisions, QCD jets would deposit a large fraction of their energy and into the produced matter. The question of how this energy is degraded and whether we can use this phenomenon to probe the properties of the produced matter is now under active discussion. It has been proposed that if this matter, which is now being referred to as a {\em strongly coupled Quark-Gluon Plasma} (sQGP), may behave as a liquid with a very small viscosity. In this case, a very specific collective excitation should be produced, called the ``conical flow'', similar e.g. to the sonic booms generated by the shock waves produced by supersonic planes. The RHIC experiments seem indeed to be obtaining some indication that the production of particles emitted opposite to a high-ptp_t jet may actually be peaked away from the quenched jet direction, at an angle roughly consistent with the direction expected in case a shock wave is produced (i.e. orthogonal to the Mach cone). In this note we speculate that for tagged heavy-quark jets one may observe a shrinkage of the Mach cone at moderate ptp_t. The experimental observation of such an effect would be a very good test for the validity of the whole picture currently emerging from the study of partonic matter in nuclear collisions

    Instanton-induced Effects in QCD High-Energy Scattering

    Get PDF
    We evaluate a number of new instanton-induced phenomena in QCD, starting with static dipole-dipole potentials, and proceeding to quark-quark and dipole-dipole scattering at high energy. We use a non-perturbative formulation of the scattering amplitude in terms of a correlator of two Wilson-lines (quarks) or Wilson-loops (dipoles) and analyze the Euclidean amplitudes with both perturbative gluons and instantons. The results are analytically continued to Minkowski geometry, by interpreting the angle between the Wilson lines as rapidity. We discuss the relevance of our results for the phenomenology of near-forward hadronic processes at high energy, especially for processes with multiple color exchanges

    Chiral effective action with heavy quark symmetry

    Full text link
    We derive an effective action combining chiral and heavy quark symmetry, using approximate bosonization techniques of QCD. We explicitly show that the heavy-quark limit is compatible with the large NcN_c (number of color) limit in the meson sector, and derive specific couplings between the light and heavy mesons (DD, D∗D^*, ...) and their chiral partners. The relevance of this effective action to solitons with heavy quarks describing heavy baryons is discussed.Comment: 14 pages, SUNY-NTG-92/2
    corecore