8 research outputs found

    Standardization in radiomics analysis

    Get PDF
    Radiomics has the potential to provide tumor characteristics with noninvasive and repeatable way. The purpose of this paper is to evaluate the standardization effect of imaging features for radiomics analysis. For this purpose, we prepared two CT databases ; one includes 40 non-small cell lung cancer (NSCLC) patients for whom tumor biopsies was performed before stereotactic body radiation therapy in The University of Tokyo Hospital, and the other includes 29 early-stage NSCLC datasets from the Cancer Imaging Archive. The former was used as the training data, whereas the later was used as the test data in the evaluation of the prediction model. In total, 476 imaging features were extracted from each data. Then, both training and test data were standardized as the min-max normalization, the z-score normalization, and the whitening from the principle component analysis. All of standardization strategies improved the accuracy for the histology prediction. The area under the receiver observed characteristics curve was 0.725, 0.789, and 0.785 in above standardizations, respectively. Radiomics analysis has shown that robust features have a high prognostic power in predicting early-stage NSCLC histology subtypes. The performance was able to be improved by standardizing the data in the feature space

    SBRT FOR CENTRAL LUNG TUMORS WITH 56 Gy/7 fr

    Get PDF
    Stereotactic body radiotherapy (SBRT) for centrally‑located lung tumors remains a challenge because of the increased risk of treatment‑related adverse events (AEs), and uncertainty around prescribing the optimal dose. The present study reported the results of central tumor SBRT with 56 Gy in 7 fractions (fr) at the University of Tokyo Hospital. A total of 35 cases that underwent SBRT with or without volumetric‑modulated arc therapy consisting of 56 Gy/7 fr for central lung lesions between 2010 and 2016 at the University of Tokyo Hospital were reveiwed. A central lesion was defined as a tumor within 2 cm of the proximal bronchial tree (RTOG 0236 definition) or within 2 cm in all directions of any critical mediastinal structure. Local control (LC), overall survival (OS), and AEs were investigated. The Kaplan‑Meier method was used to estimate LC and OS. AEs were scored per the Common Terminology Criteria for Adverse Events Version 4.0. Thirty‑five patients with 36 central lung lesions were included. Fifteen lesions were primary non‑small cell lung cancer (NSCLC), 13 were recurrences of NSCLC, and 8 had oligo‑recurrences from other primaries. Median tumor diameter was 29 mm. Eighteen patients had had prior surgery. At a median follow‑up of 13.1 months for all patients and 18.3 months in surviving patients, 22 patients had died, ten due to primary disease (4 NSCLC), while three were treatment‑related. The 1‑ and 2‑year OS were 57.3 and 40.4%, respectively, and median OS was 15.7 months. Local recurrence occurred in only two lesions. 1‑ and 2‑year LC rates were both 96%. Nine patients experienced grade ≥3 toxicity, representing 26% of the cohort. Two of these were grade 5, one pneumonitis and one hemoptysis. Considering the background of the subject, tumor control of our central SBRT is promising, especially in primary NSCLC. However, the safety of SBRT to central lung cancer remains controversial

    Long-term outcomes of high dose carbon-ion radiation therapy for unresectable upper cervical (C1-2) chordoma.

    No full text
    Background: Chordoma is a rare, locally invasive neoplasm of the axial skeleton. Complete resection is often difficult, especially for the upper-cervical (C1-2) spine. We evaluated the efficacy and safety of carbon-ion radiotherapy (CIRT) for unresectable C1-2 chordoma.Methods: Patients with C1-2 chordoma treated with definitive CIRT (60.8 Gy [RBE] in 16 fractions) were retrospectively analyzed. We evaluated OS, LC, PFS, and toxicity.Results: Nineteen eligible patients all completed the planned course of CIRT. With the median follow-up 68 months (range: 29-144), median OS was 126 months (range: 36-NA). Five-year OS, LC, and PFS were 68.4% (95% CI, 42.8%-84.4%), 75.2% (46.1%-90.0%), and 64.1% (36.3%-82.3%), respectively. Regarding acute toxicity of grade ≥3, there was only one grade 3 mucositis. Late toxicity included radiation-induced myelitis (grade 3 in 1 patient; 5.3%), and compression fractures (n = 5; 26.3%).Conclusions: High-dose CIRT is a promising treatment option for unresectable upper cervical chordoma

    Long-Term Outcomes of Ablative Carbon-Ion Radiotherapy for Central Non-Small Cell Lung Cancer: A Single-Center, Retrospective Study

    No full text
    The aim of this study is to assess the efficacy and safety of ablative carbon ion radiotherapy (CIRT) for early stage central non-small cell lung cancer (NSCLC). We retrospectively reviewed 30 patients who had received CIRT at 68.4 Gy in 12 fractions for central NSCLC in 2006–2019. The median age was 75 years, and the median Karnofsky Performance Scale score was 90%. All patients had concomitant chronic obstructive pulmonary disease, and 20 patients (67%) were considered inoperable. In DVH analysis, the median lung V5 and V20 were 15.5% and 10.4%, and the median Dmax, D0.5cc, D2cc of proximal bronchial tree was 65.6 Gy, 52.8 Gy, and 10.0 Gy, respectively. At a median follow-up of 43 months, the 3-year overall survival, disease-specific survival, and local control rates were 72.4, 75.8, and 88.7%, respectively. Two patients experienced grade 3 pneumonitis, but no grade ≥3 adverse events involving the mediastinal organs occurred. Ablative CIRT is feasible and effective for central NSCLC and could be considered as a treatment option, especially for patients who are intolerant of other curative treatments
    corecore