1,039 research outputs found
Electrically-induced n-i-p junctions in multiple graphene layer structures
The Fermi energies of electrons and holes and their densities in different
graphene layers (GLs) in the n- and p-regions of the electrically induced n-i-p
junctions formed in multiple-GL structures are calculated both numerically and
using a simplified analytical model. The reverse current associated with the
injection of minority carriers through the n- and p-regions in the
electrically-induced n-i-p junctions under the reverse bias is calculated as
well. It is shown that in the electrically-induced n-i-p junctions with
moderate numbers of GLs the reverse current can be substantially suppressed.
Hence, multiple-GL structures with such n-i-p junctions can be used in
different electron and optoelectron devices.Comment: 7 pages, 6 figure
Plasmonic shock waves and solitons in a nanoring
We apply the hydrodynamic theory of electron liquid to demonstrate that a
circularly polarized radiation induces the diamagnetic, helicity-sensitive dc
current in a ballistic nanoring. This current is dramatically enhanced in the
vicinity of plasmonic resonances. The resulting magnetic moment of the nanoring
represents a giant increase of the inverse Faraday effect. With increasing
radiation intensity, linear plasmonic excitations evolve into the strongly
non-linear plasma shock waves. These excitations produce a series of the well
resolved peaks at the THz frequencies. We demonstrate that the plasmonic wave
dispersion transforms the shock waves into solitons. The predicted effects
should enable multiple applications in a wide frequency range (from the
microwave to terahertz band) using optically controlled ultra low loss
electric, photonic and magnetic devices.Comment: 13 pages, 12 figure
Gas Sensing with h-BN Capped MoS2 Heterostructure Thin Film Transistors
We have demonstrated selective gas sensing with molybdenum disulfide (MoS2)
thin films transistors capped with a thin layer of hexagonal boron nitride
(h-BN). The resistance change was used as a sensing parameter to detect
chemical vapors such as ethanol, acetonitrile, toluene, chloroform and
methanol. It was found that h-BN dielectric passivation layer does not prevent
gas detection via changes in the source-drain current in the active MoS2 thin
film channel. The use of h-BN cap layers (thickness H=10 nm) in the design of
MoS2 thin film gas sensors improves device stability and prevents device
degradation due to environmental and chemical exposure. The obtained results
are important for applications of van der Waals materials in chemical and
biological sensing.Comment: 3 pages; 4 figure
- …