116 research outputs found
Using X-Ray In-Line Phase-Contrast Imaging for the Investigation of Nude Mouse Hepatic Tumors
The purpose of this paper is to report the noninvasive imaging of hepatic tumors without contrast agents. Both normal tissues and tumor tissues can be detected, and tumor tissues in different stages can be classified quantitatively. We implanted BEL-7402 human hepatocellular carcinoma cells into the livers of nude mice and then imaged the livers using X-ray in-line phase-contrast imaging (ILPCI). The projection images' texture feature based on gray level co-occurrence matrix (GLCM) and dual-tree complex wavelet transforms (DTCWT) were extracted to discriminate normal tissues and tumor tissues. Different stages of hepatic tumors were classified using support vector machines (SVM). Images of livers from nude mice sacrificed 6 days after inoculation with cancer cells show diffuse distribution of the tumor tissue, but images of livers from nude mice sacrificed 9, 12, or 15 days after inoculation with cancer cells show necrotic lumps in the tumor tissue. The results of the principal component analysis (PCA) of the texture features based on GLCM of normal regions were positive, but those of tumor regions were negative. The results of PCA of the texture features based on DTCWT of normal regions were greater than those of tumor regions. The values of the texture features in low-frequency coefficient images increased monotonically with the growth of the tumors. Different stages of liver tumors can be classified using SVM, and the accuracy is 83.33%. Noninvasive and micron-scale imaging can be achieved by X-ray ILPCI. We can observe hepatic tumors and small vessels from the phase-contrast images. This new imaging approach for hepatic cancer is effective and has potential use in the early detection and classification of hepatic tumors
Quark mass density- and temperature- dependent model for strange quark matter
It is found that the radius of a stable strangelet decreases as the
temperature increases in a quark mass density-dependent model. To overcome this
difficulty, we extend this model to a quark mass density- and temperature-
dependent model in which the vacuum energy density at zero baryon density limit
B depends on temperature. An ansatz is introduced and the regions for the best
choice of the parameters are studied.Comment: 5 pages, 4 figure
Case report and literature review: Orally ingested toothpick perforating the lower rectum
IntroductionMost foreign bodies (FBs) can spontaneously pass through the gastrointestinal tract. Sharp FBs are believed to be able to puncture any part of the gastrointestinal tract, causing perforation and potentially secondary damage to adjacent organs.Case descriptionA 44-year-old man complained of having persistent dull pain in the perianal region. He was diagnosed with a toothpick impacted into the wall of the lower rectum after accepting a digital rectal examination of the lower rectum and a pelvic computed tomography (CT). The surgeon extracted the FB using vascular forceps guided by the operator’s index finger. The patient was discharged after intravenous ceftriaxone was given for 6 days. A follow-up pelvic CT performed 2 weeks after surgery revealed that the perirectal fat and muscles had already normalized.ConclusionA systematic review of relevant literature from the past decade was performed to summarize the imaging features of an orally ingested toothpick perforating the gastrointestinal tract. The location of abdominal pain is an important clue for the diagnosis of toothpick perforation, and a CT examination is recommended as the first option for the detection of an ingested toothpick. Determining the location of the toothpick perforation and assessing the severity of local inflammation are important bases for the selection of treatment
Safety and efficacy evaluation of halicin as an effective drug for inhibiting intestinal infections
Halicin, the first antibacterial agent discovered by artificial intelligence, exerts broad-spectrum antibacterial effects and has a unique structure. Our study found that halicin had a good inhibitory effect on clinical isolates of drug-resistant strains and Clostridium perfringens (C. perfringens). The safety of halicin was evaluated by acute oral toxicity, genotoxicity and subchronic toxicity studies. The results of acute toxicity test indicated that halicin, as a low-toxicity compound, had an LD50 of 2018.3Â mg/kg. The results of sperm malformation, bone marrow chromosome aberration and cell micronucleus tests showed that halicin had no obvious genotoxicity. However, the results of the 90-day subchronic toxicity test indicated that the test rats exhibited weight loss and slight renal inflammation at a high dose of 201.8Â mg/kg. Teratogenicity of zebrafish embryos showed that halicin had no significant teratogenicity. Analysis of intestinal microbiota showed that halicin had a significant effect on the intestinal microbial composition, but caused a faster recovery. Furthermore, drug metabolism experiments showed that halicin was poorly absorbed and quickly eliminated in vivo. Our study found that halicin had a good therapeutic effect on intestinal infection model of C. perfringens. These results show the feasibility of developing oral halicin as a clinical candidate drug for treating intestinal infections
MR Imaging Measures of Intracranial Atherosclerosis in a Population-based Study
Our MR imaging protocol characterized individuals at greatest risk for having intracranial atherosclerotic disease lesions and offers a reliable technique for identifying lesions in patients with suspected disease
Micro Soft Tissues Visualization Based on X-Ray Phase-Contrast Imaging
The current imaging methods have a limited ability to visualize microstructures of biological soft tissues. Small lesions cannot be detected at the early stage of the disease. Phase contrast imaging (PCI) is a novel non-invasive imaging technique that can provide high contrast images of soft tissues by the use of X-ray phase shift. It is a new choice in terms of non-invasively revealing soft tissue details. In this study, the lung and hepatic fibrosis models of mice and rats were used to investigate the ability of PCI in microstructures observation of soft tissues. Our results demonstrated that different liver fibrosis stages could be distinguished non-invasively by PCI. The three-dimensional morphology of a segment of blood vessel was constructed. Noteworthy, the blood clot inside the vessel was visualized in three dimensions which provided a precise description of vessel stenosis. Furthermore, the whole lung airways including the alveoli were obtained. We had specifically highlighted its use in the visualization and assessment of the alveoli. To our knowledge, this was the first time for non-invasive alveoli imaging using PCI. This finding may offer a new perspective on the diagnosis of respiratory disease. All the results confirmed that PCI will be a valuable tool in biological soft tissues imaging
Non-Invasive Microstructure and Morphology Investigation of the Mouse Lung: Qualitative Description and Quantitative Measurement
BACKGROUND: Early detection of lung cancer is known to improve the chances of successful treatment. However, lungs are soft tissues with complex three-dimensional configuration. Conventional X-ray imaging is based purely on absorption resulting in very low contrast when imaging soft tissues without contrast agents. It is difficult to obtain adequate information of lung lesions from conventional X-ray imaging. METHODS: In this study, a recently emerged imaging technique, in-line X-ray phase contrast imaging (IL-XPCI) was used. This powerful technique enabled high-resolution investigations of soft tissues without contrast agents. We applied IL-XPCI to observe the lungs in an intact mouse for the purpose of defining quantitatively the micro-structures in lung. FINDINGS: The three-dimensional model of the lung was successfully established, which provided an excellent view of lung airways. We highlighted the use of IL-XPCI in the visualization and assessment of alveoli which had rarely been studied in three dimensions (3D). The precise view of individual alveolus was achieved. The morphological parameters, such as diameter and alveolar surface area were measured. These parameters were of great importance in the diagnosis of diseases related to alveolus and alveolar scar. CONCLUSION: Our results indicated that IL-XPCI had the ability to represent complex anatomical structures in lung. This offered a new perspective on the diagnosis of respiratory disease and may guide future work in the study of respiratory mechanism on the alveoli level
- …