7 research outputs found

    Overcoming Crystallinity Limitations of Aluminium Metal–Organic Frameworks by Oxalic Acid Modulated Synthesis

    No full text
    A modulated synthesis approach based on the chelating properties of oxalic acid (H2C2O4) is presented as a robust and versatile method to achieve highly crystalline Al-based metal–organic frameworks (MOFs). A comparative study on this method and the already established modulation by hydrofluoric acid was conducted using MIL-53 as test system. The superior performance of oxalic acid modulation in terms of crystallinity and absence of undesired impurities is explained by assessing the coordination modes of the two modulators and the structural features of the product. The validity of our approach was confirmed for a diverse set of Al-MOFs, namely X-MIL-53 (X = OH, CH3O, Br, NO2), CAU-10, MIL-69, and Al(OH)ndc (ndc = 1,4-naphtalenedicarboxylate), highlighting the potential benefits of extending the use of this modulator to other coordination materials.<br /

    Overcoming Crystallinity Limitations of Aluminium Metal-Organic Frameworks by Oxalic Acid Modulated Synthesis

    No full text
    A modulated synthesis approach based on the chelating properties of oxalic acid (H2C2O4) is presented as a robust and versatile method to achieve highly crystalline Al-based metal-organic frameworks. A comparative study on this method and the already established modulation by hydrofluoric acid was conducted using MIL-53 as test system. The superior performance of oxalic acid modulation in terms of crystallinity and absence of undesired impurities is explained by assessing the coordination modes of the two modulators and the structural features of the product. The validity of our approach was confirmed for a diverse set of Al-MOFs, namely X-MIL-53 (X=OH, CH3O, Br, NO2), CAU-10, MIL-69, and Al(OH)ndc (ndc=1,4-naphtalenedicarboxylate), highlighting the potential benefits of extending the use of this modulator to other coordination materials.ChemE/Catalysis Engineerin

    Confined Water Cluster Formation in Water Harvesting by Metal–Organic Frameworks: CAU-10-H versus CAU-10-CH<sub>3</sub>

    No full text
    Several metal–organic frameworks (MOFs) excel in harvesting water from the air or as heat pumps as they show a steep increase in water uptake at 10–30 % relative humidity (RH%). A precise understanding of which structural characteristics govern such behavior is lacking. Herein, CAU-10-H and CAU-10-CH3 are studied with -H, -CH3 corresponding to the functions grafted to the organic linker. CAU-10-H shows a steep water uptake ≈18 RH% of interest for water harvesting, yet the subtle replacement of -H by -CH3 in the organic linker drastically changes the water adsorption behavior to less steep water uptake at much higher humidity values. The materials’ structural deformation and water ordering during adsorption with in situ sum-frequency generation, in situ X-ray diffraction, and molecular simulations are unraveled. In CAU-10-H, an energetically favorable water cluster is formed in the hydrophobic pore, tethered via H-bonds to the framework μ-OH groups, while for CAU-10-CH3, such a favorable cluster cannot form. By relating the findings to the features of water adsorption isotherms of a series of MOFs, it is concluded that favorable water adsorption occurs when sites of intermediate hydrophilicity are present in a hydrophobic structure, and the formation of energetically favorable water clusters is possible.ChemE/Catalysis Engineerin

    Porous Dithiine-Linked Covalent Organic Framework as a Dynamic Platform for Covalent Polysulfide Anchoring in Lithium-Sulfur Battery Cathodes

    No full text
    Dithiine linkage formation via a dynamic and self-correcting nucleophilic aromatic substitution reaction enables the de novo synthesis of a porous thianthrene-based two-dimensional covalent organic framework (COF). For the first time, this organo-sulfur moiety is integrated as a structural building block into a crystalline layered COF. The structure of the new material deviates from the typical planar interlayer π-stacking of the COF to form undulated layers caused by bending along the C-S-C bridge, without loss of aromaticity and crystallinity of the overall COF structure. Comprehensive experimental and theoretical investigations of the COF and a model compound, featuring the thianthrene moiety, suggest partial delocalization of sulfur lone pair electrons over the aromatic backbone of the COF decreasing the band gap and promoting redox activity. Postsynthetic sulfurization allows for direct covalent attachment of polysulfides to the carbon backbone of the framework to afford a molecular-designed cathode material for lithium-sulfur (Li-S) batteries with a minimized polysulfide shuttle. The fabricated coin cell delivers nearly 77% of the initial capacity even after 500 charge-discharge cycles at 500 mA/g current density. This novel sulfur linkage in COF chemistry is an ideal structural motif for designing model materials for studying advanced electrode materials for Li-S batteries on a molecular level

    Sulfide Bridged Covalent Quinoxaline Frameworks for Lithium-Organo-Sulfide Battery

    No full text
    The chelating ability of quinoxaline cores and the redox activity of organo-sulfide bridges in layered covalent-organic frameworks (COFs) offer dual active sites for reversible lithium (Li)-storage. The designed COFs combining these properties feature disulfide and polysulfide-bridged networks showcasing an intriguing lithium-storage mechanism, which can be considered as a lithium-organo-sulfide (Li-OrS) battery. The experimental-computational elucidation of three quinoxaline COFs containing systematically enhanced sulfur atoms in sulfide bridging demonstrates fast kinetics during Li interactions with the quinoxaline core. Meanwhile, bilateral covalent bonding of sulfide bridges to quinoxaline core enables a redox-mediated reversible cleavage of the sulfur-sulfur bond and the formation of covalently anchored lithium-sulfide chains or clusters during Li-interactions, accompanied by a marked reduction of Li-polysulfide (Li-PS) dissolution into the electrolyte, a frequent drawback of lithium-sulfur (Li-S) batteries. The electrochemical behavior of model compounds mimicking the sulfide linkages of the COFs and operando Raman studies on the framework structure unravels the reversibility of the profound Li-ion-organo-sulfide interactions. As a result, nearly 84% retention of specific capacity was observed at 100 mA/g for the polysulfide-bridged COF after 500 charge-discharge cycles. Thus, integrating redox-active organic-framework materials with covalently anchored sulfides enables a stable Li-OrS battery mechanism which shows benefits over a typical Li-S battery. This article is protected by copyright. All rights reserved
    corecore