1 research outputs found

    Evolution Characteristics, Eco-Environmental Response and Influencing Factors of Production-Living-Ecological Space in the Qinghai–Tibet Plateau

    No full text
    The Qinghai–Tibet Plateau (QTP) is a major “river source” and “ecological source” in China, as well as South Asia and Southeast Asia, and is a typical plateau region. Studying the evolution characteristics and ecological effects of the production-living-ecological space (PLES) of the QTP is of great practical significance and theoretical value for strengthening its ecological construction and environmental protection. Based on 30 m × 30 m land use/cover data of the QTP at five time-points of 1980, 1990, 2000, 2010, and 2020, this paper investigates the PLES evolution characteristics, transfer characteristics, eco-environmental response, and influencing factors of the eco-environmental quality index (EEQI) in the region of China of the QTP from 1980 to 2020 by land use transfer matrix, eco-environmental response model, hot spot analysis, and geographically weighted regression (GWR). The results show that: (1) from 1980 to 2020, the ecological space of the QTP decreased, while the production and living space saw an increase. The PLES pattern of the QTP showed a clear shift from 2000 to 2010, while there was no significant change from 1980 to 2000 and from 2010 to 2020. (2) From 1980 to 2020, the EEQI of the QTP decreased from 0.5634 in 1980 to 0.5038 in 2010, and then increased to 0.5044 in 2020, showing a changing trend of first decreasing and then increasing; the degradation of grassland ecological space to other ecological space was the main cause leading to ecological environment deterioration. (3) From 1980 to 2000, the EEQI was high in the midwestern and southeastern parts of the QTP, presenting a double-center distribution. From 2010 to 2020, the EEQI decreased in the western part, while the high value area in the eastern part increased significantly, obviously low in the west and high in the east. The spatial variation characteristics of hot and cold spots and EEQI are generally similar. (4) Natural ecological and socioeconomic factors have significant differences on the spatial distribution of EEQI in the QTP, and natural ecological factors are the main driving factors, with topographic relief having the strongest effect on EEQI as a natural ecological factor, and population density having the strongest effect as a socioeconomic factor
    corecore