24 research outputs found

    Cyclic AMP-Dependent Protein Kinase A Regulates the Alternative Splicing of CaMKIIδ

    Get PDF
    Ca2+/calmodulin-dependent protein kinase (CaMK) IIδ is predominantly expressed in the heart. There are three isoforms of CaMKIIδ resulting from the alternative splicing of exons 14, 15, and 16 of its pre-mRNA, which is regulated by the splicing factor SF2/ASF. Inclusion of exons 15 and 16 or of exon 14 generates δA or δB isoform. The exclusion of all three exons gives rise to δC isoform, which is selectively increased in pressure-overload-induced hypertrophy. Overexpression of either δB or δC induces hypertrophy and heart failure, suggesting their specific role in the pathogenesis of hypertrophy and heart failure. It is well known that the β-adrenergic-cyclic AMP-dependent protein kinase A (PKA) pathway is implicated in heart failure. To determine the role of PKA in the alternative splicing of CaMKIIδ, we constructed mini-CaMKIIδ genes and used these genes to investigate the regulation of the alternative splicing of CaMKIIδ by PKA in cultured cells. We found that PKA promoted the exclusion of exons 14, 15, and 16 of CaMKIIδ, resulting in an increase in δC isoform. PKA interacted with and phosphorylated SF2/ASF, and enhanced SF2/ASF's activity to promote the exclusion of exons 14, 15, and 16 of CaMKIIδ, leading to a further increase in the expression of δC isoform. These findings suggest that abnormality in β-adrenergic-PKA signaling may contribute to cardiomyopathy and heart failure through dysregulation in the alternative splicing of CaMKIIδ exons 14, 15, and 16 and up-regulation of CaMKIIδC

    Tau-based treatment strategies in neurodegenerative diseases

    Full text link

    pmp1+, a suppressor of calcineurin deficiency, encodes a novel MAP kinase phosphatase in fission yeast.

    No full text
    Calcineurin is a highly conserved and ubiquitously expressed Ca2+- and calmodulin-dependent protein phosphatase. The in vivo role of calcineurin, however, is not fully understood. Here, we show that disruption of the calcineurin gene (ppb1(+)) in fission yeast results in a drastic chloride ion (Cl-)-sensitive growth defect and that a high copy number of a novel gene pmp1(+) suppresses this defect. pmp1(+) encodes a phosphatase, most closely related to mitogen-activated protein (MAP) kinase phosphatases of the CL100/MKP-1 family. Pmp1 and calcineurin share an essential function in Cl- homeostasis, cytokinesis and cell viability. Pmp1 phosphatase dephosphorylates Pmk1, the third MAP kinase in fission yeast, in vitro and in vivo, and is bound to Pmk1 in vivo, strongly suggesting that Pmp1 negatively regulates Pmk1 MAP kinase by direct dephosphorylation. Consistently, the deletion of pmk1(+) suppresses the Cl--sensitive growth defect of ppb1 null. Thus, calcineurin and the Pmk1 MAP kinase pathway may play antagonistic functional roles in the Cl- homeostasis
    corecore