610 research outputs found

    Exotic mesons with hidden charm and bottom near thresholds

    Full text link
    We study heavy hadron spectroscopy near heavy meson thresholds. We employ heavy pseudoscalar meson P and heavy vector meson P* as effective degrees of freedom and consider meson exchange potentials between them. All possible composite states which can be constructed from the P and P* mesons are studied up to the total angular momentum J <= 2. We consider, as exotic states, isosinglet states with exotic J^{PC} quantum numbers and isotriplet states. We solve numerically the Schr\"odinger equation with channel-couplings for each state. We found B(*)barB(*) molecule states for I^G(J^{PC}) = 1^+(1^{+-}) correspond to the masses of twin resonances Zb(10610) and Zb(10650). We predict several possible B(*)barB(*) bound and/or resonant states in other channels. On the other hand, there are no B(*)barB(*) bound and/or resonant states whose quantum numbers are exotic.Comment: 10 pages, 1 figure, to appear in the proceedings of The 5th International Workshop on Charm Physics (Charm 2012

    Resonant critical coupling of surface lattice resonances with fluorescent absorptive thin film

    Full text link
    Surface lattice resonance supported on nanoparticle arrays is a promising candidate in enhancing fluorescent effects in both absorption and emission. The optical enhancement provided by surface lattice resonance is primarily through the light confinement beyond the diffraction limit, where the nanoparticle arrays can enhance light-matter interaction for increased absorption as well as providing more local density of states for enhanced spontaneous emission. In this work, we optimize the in-coupling efficiency to the fluorescent molecules by finding the conditions to maximize the absorption, also known as the critical coupling condition. We studied the transmission characteristics and the fluorescent emission of a TiO2TiO_2 nanoparticle array embedded in an index-matching layer with fluorescent dye at various concentrations. A modified coupled-mode theory that describes the nanoparticle array was then derived and verified by numerical simulations. With the analytical model, we analyzed the experimental measurements and discovered the condition to critically couple light into the fluorescent dye, which is demonstrated as the strongest emission. This study presents a useful guide for designing efficient energy transfer from excitation beam to the emitters, which maximizes the external conversion efficiency.Comment: 26 pages, 10 figure

    Reformulation of Boundary String Field Theory in terms of Boundary State

    Full text link
    We reformulate bosonic boundary string field theory in terms of boundary state. In our formulation, we can formally perform the integration of target space equations of motion for arbitrary field configurations without assuming decoupling of matter and ghost. Thus, we obtain the general form of the action of bosonic boundary string field theory. This formulation may help us to understand possible interactions between boundary string field theory and the closed string sector.Comment: 13 page

    Double-Free-Layer Stochastic Magnetic Tunnel Junctions with Synthetic Antiferromagnets

    Full text link
    Stochastic magnetic tunnel junctions (sMTJ) using low-barrier nanomagnets have shown promise as fast, energy-efficient, and scalable building blocks for probabilistic computing. Despite recent experimental and theoretical progress, sMTJs exhibiting the ideal characteristics necessary for probabilistic bits (p-bit) are still lacking. Ideally, the sMTJs should have (a) voltage bias independence preventing read disturbance (b) uniform randomness in the magnetization angle between the free layers, and (c) fast fluctuations without requiring external magnetic fields while being robust to magnetic field perturbations. Here, we propose a new design satisfying all of these requirements, using double-free-layer sMTJs with synthetic antiferromagnets (SAF). We evaluate the proposed sMTJ design with experimentally benchmarked spin-circuit models accounting for transport physics, coupled with the stochastic Landau-Lifshitz-Gilbert equation for magnetization dynamics. We find that the use of low-barrier SAF layers reduces dipolar coupling, achieving uncorrelated fluctuations at zero-magnetic field surviving up to diameters exceeding (D≈100D\approx 100 nm) if the nanomagnets can be made thin enough (≈1\approx 1-22 nm). The double-free-layer structure retains bias-independence and the circular nature of the nanomagnets provides near-uniform randomness with fast fluctuations. Combining our full sMTJ model with advanced transistor models, we estimate the energy to generate a random bit as ≈\approx 3.6 fJ, with fluctuation rates of ≈\approx 3.3 GHz per p-bit. Our results will guide the experimental development of superior stochastic magnetic tunnel junctions for large-scale and energy-efficient probabilistic computation for problems relevant to machine learning and artificial intelligence

    Theory and simulations of relativistic particle motions in a magnetosonic shock wave

    Full text link

    A Phase-Space Approach to Collisionless Stellar Systems Using a Particle Method

    Get PDF
    A particle method for reproducing the phase space of collisionless stellar systems is described. The key idea originates in Liouville's theorem which states that the distribution function (DF) at time t can be derived from tracing necessary orbits back to t=0. To make this procedure feasible, a self-consistent field (SCF) method for solving Poisson's equation is adopted to compute the orbits of arbitrary stars. As an example, for the violent relaxation of a uniform-density sphere, the phase-space evolution which the current method generates is compared to that obtained with a phase-space method for integrating the collisionless Boltzmann equation, on the assumption of spherical symmetry. Then, excellent agreement is found between the two methods if an optimal basis set for the SCF technique is chosen. Since this reproduction method requires only the functional form of initial DFs but needs no assumptions about symmetry of the system, the success in reproducing the phase-space evolution implies that there would be no need of directly solving the collisionless Boltzmann equation in order to access phase space even for systems without any special symmetries. The effects of basis sets used in SCF simulations on the reproduced phase space are also discussed.Comment: 16 pages w/4 embedded PS figures. Uses aaspp4.sty (AASLaTeX v4.0). To be published in ApJ, Oct. 1, 1997. This preprint is also available at http://www.sue.shiga-u.ac.jp/WWW/prof/hozumi/papers.htm

    Virtual turning points and bifurcation of Stokes curves for higher order ordinary differential equations

    Full text link
    For a higher order linear ordinary differential operator P, its Stokes curve bifurcates in general when it hits another turning point of P. This phenomenon is most neatly understandable by taking into account Stokes curves emanating from virtual turning points, together with those from ordinary turning points. This understanding of the bifurcation of a Stokes curve plays an important role in resolving a paradox recently found in the Noumi-Yamada system, a system of linear differential equations associated with the fourth Painleve equation.Comment: 7 pages, 4 figure

    CMOS + stochastic nanomagnets: heterogeneous computers for probabilistic inference and learning

    Full text link
    Extending Moore's law by augmenting complementary-metal-oxide semiconductor (CMOS) transistors with emerging nanotechnologies (X) has become increasingly important. Accelerating Monte Carlo algorithms that rely on random sampling with such CMOS+X technologies could have significant impact on a large number of fields from probabilistic machine learning, optimization to quantum simulation. In this paper, we show the combination of stochastic magnetic tunnel junction (sMTJ)-based probabilistic bits (p-bits) with versatile Field Programmable Gate Arrays (FPGA) to design a CMOS + X (X = sMTJ) prototype. Our approach enables high-quality true randomness that is essential for Monte Carlo based probabilistic sampling and learning. Our heterogeneous computer successfully performs probabilistic inference and asynchronous Boltzmann learning, despite device-to-device variations in sMTJs. A comprehensive comparison using a CMOS predictive process design kit (PDK) reveals that compact sMTJ-based p-bits replace 10,000 transistors while dissipating two orders of magnitude of less energy (2 fJ per random bit), compared to digital CMOS p-bits. Scaled and integrated versions of our CMOS + stochastic nanomagnet approach can significantly advance probabilistic computing and its applications in various domains by providing massively parallel and truly random numbers with extremely high throughput and energy-efficiency

    Regulation of T helper type 2 cell differentiation by murine Schnurri-2

    Get PDF
    Schnurri (Shn) is a large zinc finger protein implicated in cell growth, signal transduction, and lymphocyte development. Vertebrates possess at least three Shn orthologues (Shn-1, Shn-2, and Shn-3), which appear to act within the bone morphogenetic protein, transforming growth factor β, and activin signaling pathways. However, the physiological functions of the Shn proteins remain largely unknown. In Shn-2–deficient mice, mature peripheral T cells exhibited normal anti–T cell receptor–induced proliferation, although there was dramatic enhancement in the differentiation into T helper type (Th)2 cells and a marginal effect on Th1 cell differentiation. Shn-2–deficient developing Th2 cells showed constitutive activation of nuclear factor κB (NF-κB) and enhanced GATA3 induction. Shn-2 was able to compete with p50 NF-κB for binding to a consensus NF-κB motif and inhibit NF-κB–driven promoter activity. Thus, Shn-2 plays a crucial role in the control of Th2 cell differentiation by regulating NF-κB function
    • …
    corecore