5 research outputs found

    A User-Centered Concept Mining System for Query and Document Understanding at Tencent

    Full text link
    Concepts embody the knowledge of the world and facilitate the cognitive processes of human beings. Mining concepts from web documents and constructing the corresponding taxonomy are core research problems in text understanding and support many downstream tasks such as query analysis, knowledge base construction, recommendation, and search. However, we argue that most prior studies extract formal and overly general concepts from Wikipedia or static web pages, which are not representing the user perspective. In this paper, we describe our experience of implementing and deploying ConcepT in Tencent QQ Browser. It discovers user-centered concepts at the right granularity conforming to user interests, by mining a large amount of user queries and interactive search click logs. The extracted concepts have the proper granularity, are consistent with user language styles and are dynamically updated. We further present our techniques to tag documents with user-centered concepts and to construct a topic-concept-instance taxonomy, which has helped to improve search as well as news feeds recommendation in Tencent QQ Browser. We performed extensive offline evaluation to demonstrate that our approach could extract concepts of higher quality compared to several other existing methods. Our system has been deployed in Tencent QQ Browser. Results from online A/B testing involving a large number of real users suggest that the Impression Efficiency of feeds users increased by 6.01% after incorporating the user-centered concepts into the recommendation framework of Tencent QQ Browser.Comment: Accepted by KDD 201

    Wet Snow Flashover Characteristics of 500-kV AC Insulator Strings with Different Arrangements

    No full text
    In order to study the wet snow flashover characteristics of 500-kV AC insulator strings under different arrangements, wet snow flashover tests were carried out in the large climate chamber of China Electric Power Research Institute (CEPRI). The wet snow flashover voltages were obtained by the even-rising method and the flashovers were filmed by a camera. The test results showed that the installation of an anti-icing shed of large diameter could increase the wet snow flashover voltage. The distance between the two insulators was a key parameter that influenced the discharge process and the flashover voltage. Under Λ-string arrangement, for common insulators, the flashover performance of iced insulators increased with the connection angle; for anti-icing insulators, the flashover performance increased at first and then decreased with the connection angle. In wet snow conditions, when the connection angle was at the commonly adopted angle of 60°, the flashover performance of the common insulators under the V-string and Λ-string arrangements was almost the same. For anti-icing insulators, however, the V-string arrangement was recommended according to the tests. The results obtained in this study can provide a reference for external insulation design in wet snow conditions

    Astrocyte‐Derived Extracellular Vesicular miR‐143‐3p Dampens Autophagic Degradation of Endothelial Adhesion Molecules and Promotes Neutrophil Transendothelial Migration after Acute Brain Injury

    No full text
    Abstract Pivotal roles of extracellular vesicles (EVs) in the pathogenesis of central nervous system (CNS) disorders including acute brain injury are increasingly acknowledged. Through the analysis of EVs packaged miRNAs in plasma samples from patients with intracerebral hemorrhage (ICH), it is discovered that the level of EVs packaged miR‐143‐3p (EVs‐miR‐143‐3p) correlates closely with perihematomal edema and neurological outcomes. Further study reveals that, upon ICH, EVs‐miR‐143‐3p is robustly secreted by astrocytes and can shuttle into brain microvascular endothelial cells (BMECs). Heightened levels of miR‐143‐3p in BMECs induce the up‐regulated expression of cell adhesion molecules (CAMs) that bind to circulating neutrophils and facilitate their transendothelial cell migration (TEM) into brain. Mechanism‐wise, miR‐143‐3p directly targets ATP6V1A, resulting in impaired lysosomal hydrolysis ability and reduced autophagic degradation of CAMs. Importantly, a VCAM‐1–targeting EVs system to selectively deliver miR‐143‐3p inhibitor to pathological BMECs is created, which shows satisfactory therapeutic effects in both ICH and traumatic brain injury (TBI) mouse models. In conclusion, the study highlights the causal role of EVs‐miR‐143‐3p in BMECs’ dysfunction in acute brain injury and demonstrates a proof of concept that engineered EVs can be devised as a potentially applicable nucleotide drug delivery system for the treatment of CNS disorders
    corecore