13 research outputs found

    Distribution of multi-level B cell subsets in thymoma and thymoma-associated myasthenia gravis

    Get PDF
    B-cell subsets in peripheral blood (PB) and tumor microenvironment (TME) were evaluated to determine myasthenia gravis (MG) severity in patients with thymoma-associated MG (TMG) and the distribution of B cells in type B TMG. The distribution of mature B cells, including Bm1-Bm5, CD19+ and CD20+ B cells and non-switched (NSMBCs) and switched (SMBCs) memory B cells, were determined in 79 patients with thymoma or TMG. Quantitative relationships between the T and TMG groups and the TMG-low and TMG-high subgroups were determined. NSMBCs and SMBCs were compared in TME and PB. Type B thymoma was more likely to develop into MG, with types B2 and B3 being especially associated with MG worsening. The percentage of CD19+ B cells in PB gradually increased, whereas the percentage of CD20+ B cells and the CD19/CD20 ratio were not altered. The (Bm2 + Bm2')/(eBm5 + Bm5) index was significantly higher in the TMG-high than in thymoma group. The difference between SMBC/CD19+ and NSMBC/CD19+ B cell ratios was significantly lower in the thymoma than TMG group. NSMBCs assembled around tertiary lymphoid tissue in thymomas of patients with TMG. Few NSMBCs were observed in patients with thymoma alone, with these cells being diffusely distributed. MG severity in patients with TMG can be determined by measuring CD19+ B cells and Bm1-Bm5 in PB. The CD19/CD20 ratio is a marker of disease severity in TMG patients. Differences between NSMBCs and SMBCs in PB and TME of thymomas can synergistically determine MG severity in patients with TMG.</p

    Modulation Recognition of Radar Signals Based on Adaptive Singular Value Reconstruction and Deep Residual Learning

    No full text
    Automatically recognizing the modulation of radar signals is a necessary survival technique in electronic intelligence systems. In order to avoid the complex process of the feature extracting and realize the intelligent modulation recognition of various radar signals under low signal-to-noise ratios (SNRs), this paper proposes a method based on intrapulse signatures of radar signals using adaptive singular value reconstruction (ASVR) and deep residual learning. Firstly, the time-frequency spectrums of radar signals under low SNRs are improved after ASVR denoising processing. Secondly, a series of image processing techniques, including binarizing and morphologic filtering, are applied to suppress the background noise in the time-frequency distribution images (TFDIs). Thirdly, the training process of the residual network is achieved using TFDIs, and classification under various conditions is realized using the new-trained network. Simulation results show that, for eight kinds of modulation signals, the proposed approach still achieves an overall probability of successful recognition of 94.1% when the SNR is only &minus;8 dB. Outstanding performance proves the superiority and robustness of the proposed method

    Modulation Recognition of Radar Signals Based on Adaptive Singular Value Reconstruction and Deep Residual Learning

    No full text
    Automatically recognizing the modulation of radar signals is a necessary survival technique in electronic intelligence systems. In order to avoid the complex process of the feature extracting and realize the intelligent modulation recognition of various radar signals under low signal-to-noise ratios (SNRs), this paper proposes a method based on intrapulse signatures of radar signals using adaptive singular value reconstruction (ASVR) and deep residual learning. Firstly, the time-frequency spectrums of radar signals under low SNRs are improved after ASVR denoising processing. Secondly, a series of image processing techniques, including binarizing and morphologic filtering, are applied to suppress the background noise in the time-frequency distribution images (TFDIs). Thirdly, the training process of the residual network is achieved using TFDIs, and classification under various conditions is realized using the new-trained network. Simulation results show that, for eight kinds of modulation signals, the proposed approach still achieves an overall probability of successful recognition of 94.1% when the SNR is only −8 dB. Outstanding performance proves the superiority and robustness of the proposed method

    Anti-Jamming Imaging Method for Carrier-Free Ultra-Wideband Airborne SAR Based on Variational Modal Decomposition

    No full text
    This paper investigates the airborne synthetic aperture radar via outfield experiments based on carrier-free ultra-wideband signals with fifth-order Gaussian pulses with imaging using the backward projection algorithm. Typical blanket jamming is selected in the study, and NAM, NFM, and SFM are used as jamming signals to investigate the backward projection BP imaging effect of airborne synthetic aperture radar when subjected to blanket jamming in a real-world environment. Subsequently, a variational modal decomposition algorithm is proposed, aiming at the anti-jamming processing of airborne synthetic aperture radar. Further, the variational modal decomposition algorithms are compared with the empirical modal decomposition for the anti-jamming effect, which verified the effectiveness and high efficiency of the method. This study provides a new solution for the imaging problem of airborne synthetic aperture radar when subjected to blanket jamming, and a helpful reference is provided for the selection of anti-jamming processing methods

    Semantic learning for analysis of overlapping LPI radar signals

    No full text
    The increasingly complex radio environment may cause the received low probability of intercept (LPI) radar signals to overlap in time-frequency domains. Analyzing overlapping LPI radar signals requires identifying the modulation type and estimating the parameters of each component. Prior research performs overlapping signal analysis as a multistage task, where each stage is designed to perform a part of the task. The multistage system will increase the calculation burden and cannot be optimized as a whole. Instead, this article proposes a novel framework for analyzing overlapping signals in a single stage. Specifically, we develop a joint semantic learning deep convolutional neural network (JSLCNN) that jointly learns three tasks, i.e., feature restoration, modulation classification, and parameter regression. Since the whole cognitive pipeline is a single network, it can be optimized end-to-end directly on cognitive performance. To verify the validity of the proposed JSLCNN, numerous comparative experiments are carried out in terms of modulation recognition and parameter estimation of overlapping signals. Experimental results demonstrate that the JSLCNN has desirable extensibility for identifying unseen signal combinations and robustness against unknown jamming. Furthermore, we show that the JSLCNN outperforms other existing approaches in generic real-time parameter estimation for LPI radar signals.This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 62271261 and Grant 61971226, and in part by the Natural Science Foundation of Jiangsu Province for Excellent Young Scholars under Grant BK20200075 and Grant BK20220941

    Design and Parameter Optimization of Conveying and Baling Devices for Ramie Cutting and Baling Machine

    No full text
    Conveying and baling are two important links in the mechanized harvesting of ramie, in the face of ramie cutting and baling harvesting technology research gaps, low stalk conveying rate, high breaking rate and other problems. In this paper, according to the technical requirements of ramie harvesting, we designed a conveying and baling device, the hand-held ramie cutter. First, the key mechanism of the conveying and baling device of the equipment was designed. Then, we analyzed the location of stem clogging and the reasons for the breaking problem during the conveying and baling process. The field harvesting experiments were carried out according to the principles of Box–Behnken experimental design. Taking the machine travelling speed, conveying speed and ramie raking frequency as the test factors and using the Design-Expert V8.0.6.1 to process the data, we established a regression model for each experimental factor on the conveying rate and breaking rate. The order of influence of several factors on the breaking rate is: X2 > X1 > X3; and the effects of the three factors on the conveying rate were X3 > X2 > X1. Through response surface analysis (RSA), the effects of the factors on the indicators were explained, as was the impact of the factors on the indicators. Finally, the parameter optimization was carried out with the delivery rate as the core index. The best combination of motion parameters was obtained as follows: the travelling speed was 0.37 m/s, the chain conveying speed was 1.1 m/s, and the raking frequency was 144 times/min. With the combination of parameters under the field test verification, the results show that compared with the original work quality, the stalk delivery rate increased from 85.2% to 93% (an increase of 7.8%), the stalk breaking rate fell from 31.1% to 20.4% (a decrease of 10.7%). The performance of ramie harvesting and baling was greatly improved, and we achieved relatively satisfactory results

    Design and Testing of an Elastic Comb Reciprocating a Soybean Plant-to-Plant Seedling Avoidance and Weeding Device

    No full text
    Although there are existing interplant weed control devices for soybeans, they mostly rely on image recognition and intelligent navigation platforms. Simultaneously, automated weed control devices are not yet fully mature, resulting in issues such as high seedling injury rates and low weeding rates. This paper proposed a reciprocating interplant weed control device for soybeans based on the idea of intermittent reciprocating opening and closing of weeding execution components. The device consists of a laser ranging sensor, servo motor, Programmable Logic Controller (PLC), and weeding mechanism. Firstly, this paper explained the overall structure and working principle of the weed control device, and discussed the theoretical analysis and structural design of the critical component, elastic comb teeth. This paper also analyzed the working principle of the elastic comb teeth movement trajectory and seedling avoidance action according to soybean agronomic planting requirements. Then, field experiments were conducted, and the experiment was designed by the quadratic regression general rotation combination experimental method. The number of combs, the speed of the field management robot, and the stabbing depth were taken as the test factors to investigate their effects on the test indexes of weeding rate and seedling injury rate. The experiment utilized a response surface analysis method and designed a three-factor, three-level quadratic regression general rotation combination experimental method. The results demonstrate that the number of comb teeth has the most significant impact on the weeding rate, while the forward speed has the most significant impact on the seedling injury rate. The optimal combination of 29.06 mm stabbing depth, five comb teeth, and a forward speed of 0.31 m/s achieves an optimal operational weeding rate of 98.2% and a seedling injury rate of 1.69%. Under the optimal parameter combination conditions, the machine’s performance can meet the requirements of intra-row weeding operations in soybean fields, and the research results can provide a reference for the design and optimization of mechanical weed control devices for soybean fields

    Bending mechanics test and parameters calibration of ramie stalks

    No full text
    Abstract Research and development of ramie harvesting equipment is a key link to revitalize ramie industry, problems such as the tendency of stalks to tangle and clog the machine are very problematic, seriously affect the quality and fluency of the harvester. The structure of ramie stalk is complex, and the mechanical properties of each component vary greatly, collision between stalk and machine creates complex stress relationship. By building a finite element model, it is possible to analyze the stress state of the stalk during bending from a microscopic perspective, and to analyze the complex stress–strain situation within the stalk. The purpose of this paper is to establish a standard ramie stalk bending finite element model to provide a theoretical basis for the subsequent kinematics and dynamics. Firstly, material experiments were carried out on ramie straw. The structural and mechanical parameters of the straw components were obtained through measurement and calculation tests, and the force–deformation curves for straw bending were obtained. Bending finite element simulations were carried out on the basis of mechanical tests, and the parameters such as dynamic friction coefficient, wood Poisson's ratio and bast Poisson's ratio were determined by the central combination design. Then established an accurate bending finite element simulation model of ramie stalk, the accuracy of the model was verified at the end. In this paper, the key parameters of the ramie stalk model were calibrated through a combination of material tests and simulations. All parameters of the ramie stalk model were finally obtained, and the bending mechanical properties of the ramie stalk were analysed by applying finite element analysis. This bending mechanics simulation model can be used for kinematic and dynamics simulation analysis of conveying and baling to provide a theoretical basis for the structural design of the harvester. The methods explored here can be applied to other slender straw crops

    A zebrafish model of myelodysplasia produced through tet2 genomic editing

    No full text
    The ten-eleven translocation 2 gene (TET2) encodes a member of the TET family of DNA methylcytosine oxidases that converts 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) to initiate the demethylation of DNA within genomic CpG islands. Somatic loss-of-function mutations of TET2 are frequently observed in human myelodysplastic syndrome (MDS), which is a clonal malignancy characterized by dysplastic changes of developing blood cell progenitors, leading to ineffective hematopoiesis. We used genome-editing technology to disrupt the zebrafish Tet2 catalytic domain. tet2m/m (homozygous for the mutation) zebrafish exhibited normal embryonic and larval hematopoiesis but developed progressive clonal myelodysplasia as they aged, culminating in myelodysplastic syndromes (MDS) at 24 months of age, with dysplasia of myeloid progenitor cells and anemia with abnormal circulating erythrocytes. The resultant tet2m/m mutant zebrafish lines show decreased levels of 5hmC in hematopoietic cells of the kidney marrow but not in other cell types, most likely reflecting the ability of other Tet family members to provide this enzymatic activity in nonhematopoietic tissues but not in hematopoietic cells. tet2m/m zebrafish are viable and fertile, providing an ideal model to dissect altered pathways in hematopoietic cells and, for small-molecule screens in embryos, to identify compounds with specific activity against tet2 mutant cells.open
    corecore