3 research outputs found

    A machine learning model based on clinical features and ultrasound radiomics features for pancreatic tumor classification

    Get PDF
    ObjectiveThis study aimed to construct a machine learning model using clinical variables and ultrasound radiomics features for the prediction of the benign or malignant nature of pancreatic tumors.Methods242 pancreatic tumor patients who were hospitalized at the First Affiliated Hospital of Guangxi Medical University between January 2020 and June 2023 were included in this retrospective study. The patients were randomly divided into a training cohort (n=169) and a test cohort (n=73). We collected 28 clinical features from the patients. Concurrently, 306 radiomics features were extracted from the ultrasound images of the patients’ tumors. Initially, a clinical model was constructed using the logistic regression algorithm. Subsequently, radiomics models were built using SVM, random forest, XGBoost, and KNN algorithms. Finally, we combined clinical features with a new feature RAD prob calculated by applying radiomics model to construct a fusion model, and developed a nomogram based on the fusion model.ResultsThe performance of the fusion model surpassed that of both the clinical and radiomics models. In the training cohort, the fusion model achieved an AUC of 0.978 (95% CI: 0.96–0.99) during 5-fold cross-validation and an AUC of 0.925 (95% CI: 0.86–0.98) in the test cohort. Calibration curve and decision curve analyses demonstrated that the nomogram constructed from the fusion model has high accuracy and clinical utility.ConclusionThe fusion model containing clinical and ultrasound radiomics features showed excellent performance in predicting the benign or malignant nature of pancreatic tumors

    A Novel Hypoxia Related Marker in Blood Link to Aid Diagnosis and Therapy in Osteoarthritis

    No full text
    Osteoarthritis (OA) is a common chronic degenerative arthritis. Its treatment options are very limited. At present, hypoxia is a prominent factor in OA. This study aimed to re-explore the mechanism between hypoxia and OA, which provides new insights into the diagnosis and therapy of OA. We acquired the OA-related expression profiles of GSE48556, GSE55235, and GSE55457 for our analysis. Using gene set variation analysis (GSVA), we found significant differences in hypoxia. These differences result from multiple pathways, such as the p53 signaling pathway, cell senescence, the NF-kappa B signaling pathway, Ubiquitin-mediated proteolysis, and apoptosis. Meanwhile, the single-sample gene set enrichment analysis (ssGSEA) showed that hypoxia was significantly associated with the level of immune cell infiltration in the immune microenvironment. Thus, we believe that hypoxia is useful for the diagnosis and treatment of OA. We successfully constructed a novel hypoxia-related index (HRI) based on seven hypoxia-related genes (ADM, CDKN3, ENO1, NDRG1, PGAM1, SLC2A1, VEGFA) by least absolute shrinkage and binary logistic regression of the generalized linear regression. HRI showed potential for improving OA diagnosis through receiver operation characteristic (ROC) analysis (AUC training cohort = 0.919, AUC testing cohort = 0.985). Moreover, we found that celastrol, droxinostat, torin-2, and narciclasine may be potential therapeutic compounds for OA based on the Connectivity Map (CMap). In conclusion, hypoxia is involved in the development and progression of OA. HRI can improve diagnosis and show great potential in clinical application. Celastrol, droxinostat, torin-2, and narciclasine may be potential compounds for the treatment of OA patients
    corecore