2,125 research outputs found

    SCMA with Low Complexity Symmetric Codebook Design for Visible Light Communication

    Full text link
    Sparse code multiple access (SCMA) is attracting significant research interests currently, which is considered as a promising multiple access technique for 5G systems. It serves as a good candidate for the future communication network with massive nodes due to its capability of handling user overloading. Introducing SCMA to visible light communication (VLC) can provide another opportunity on design of transmission protocols for the communication network with massive nodes due to the limited communication range of VLC, which reduces the interference intensity. However, when applying SCMA in VLC systems, we need to modify the SCMA codebook to accommodate the real and positive signal requirement for VLC.We apply multidimensional constellation design methods to SCMA codebook. To reduce the design complexity, we also propose a symmetric codebook design. For all the proposed design approaches, the minimum Euclidean distance aims to be maximized. Our symmetric codebook design can reduce design and detection complexity simultaneously. Simulation results show that our design implies fast convergence with respect to the number of iterations, and outperforms the design that simply modifies the existing approaches to VLC signal requirements

    An iterative formula of smallest singular value of nonsingular matrices

    Full text link
    We obtain an iterative formula that converges incrementally to the smallest singular value. Similarly, we obtain an iterative formula that decreases to converge to the largest singular value

    Doc2EDAG: An End-to-End Document-level Framework for Chinese Financial Event Extraction

    Full text link
    Most existing event extraction (EE) methods merely extract event arguments within the sentence scope. However, such sentence-level EE methods struggle to handle soaring amounts of documents from emerging applications, such as finance, legislation, health, etc., where event arguments always scatter across different sentences, and even multiple such event mentions frequently co-exist in the same document. To address these challenges, we propose a novel end-to-end model, Doc2EDAG, which can generate an entity-based directed acyclic graph to fulfill the document-level EE (DEE) effectively. Moreover, we reformalize a DEE task with the no-trigger-words design to ease the document-level event labeling. To demonstrate the effectiveness of Doc2EDAG, we build a large-scale real-world dataset consisting of Chinese financial announcements with the challenges mentioned above. Extensive experiments with comprehensive analyses illustrate the superiority of Doc2EDAG over state-of-the-art methods. Data and codes can be found at https://github.com/dolphin-zs/Doc2EDAG.Comment: Accepted by EMNLP 201

    Driving positron beam acceleration with coherent transition radiation

    Get PDF
    Positron acceleration in plasma wakefield faces significant challenges since the positron beam must be pre-generated and precisely coupled into the wakefield, and most critically, suffers from defocusing issues. Here we propose a scheme that utilizes laser-driven electrons to produce, inject and accelerate positrons in a single set-up. The high-charge electron beam from wakefield acceleration creates copious electron-positron pairs via the Bethe-Heitler process, followed by enormous coherent transition radiation due to the electrons' exiting from the metallic foil. Simulation results show that the coherent transition radiation field reaches up to 10's GV m-1, which captures and accelerates the positrons to cut-off energy of 1.5 GeV with energy peak of 500 MeV and energy spread is about 24.3%. An external longitudinal magnetic field of 30 T is also applied to guide the electrons and positrons during the acceleration process. This proposed method offers a promising way to obtain GeV fast positron sources

    One-loop Matching and Running via On-shell Amplitudes

    Full text link
    In this work, we put forward a straightforward and simple approach to construct the low-energy effective field theory (EFT) from a given ultraviolet (UV) full theory by integrating heavy particles out. By calculating the on-shell amplitudes, we demonstrate how to directly achieve the one-loop matching of the UV full theory onto the EFT with the complete set of independent operators in the physical basis, which are usually obtained by removing the redundant operators in the Green's basis via the equations of motion. Furthermore, taking specific examples, we explain how to implement the on-shell-amplitude approach to derive the one-loop renormalization-group equations for the Wilson coefficients, and to find out the contributions from the evanescent operators.Comment: 22 pages, 3 figure
    • …
    corecore