420 research outputs found

    Detecting monopole charge in Weyl semimetals via quantum interference transport

    Get PDF
    Topological Weyl semimetals can host Weyl nodes with monopole charges in momentum space. How to detect the signature of the monopole charges in quantum transport remains a challenging topic. Here, we reveal the connection between the parity of monopole charge in topological semimetals and the quantum interference corrections to the conductivity. We show that the parity of monopole charge determines the sign of the quantum interference correction, with odd and even parity yielding the weak anti-localization and weak localization effects, respectively. This is attributed to the Berry phase difference between time-reversed trajectories circulating the Fermi sphere that encloses the monopole charges. From standard Feynman diagram calculations, we further show that the weak-field magnetoconductivity at low temperatures is proportional to +B+\sqrt{B} in double-Weyl semimetals and −B-\sqrt{B} in Weyl semimetals, respectively, which could be verified experimentally.Comment: published versio

    Detecting Lensing-Induced Diffraction in Astrophysical Gravitational Waves

    Full text link
    Gravitational waves emitted from compact binary coalescence can be subject to wave diffraction if they are gravitationally lensed by an intervening mass clump whose Schwarzschild timescale matches the wave period. Waves in the ground-based frequency band f∼10f\sim 10--103 10^3\,Hz are sensitive to clumps with masses ME∼102M_E \sim 10^2--103 M⊙10^3\,M_\odot enclosed within the impact parameter. These can be the central parts of low mass ML∼103M_L \sim 10^3--106 M⊙10^6\,M_\odot dark matter halos, which are predicted in Cold Dark Matter scenarios but are challenging to observe. Neglecting finely-tuned impact parameters, we focus on lenses aligned generally on the Einstein scale for which multiple lensed images may not form in the case of an extended lens. In this case, diffraction induces amplitude and phase modulations whose sizes ∼10%\sim 10\%--20%20\% are small enough so that standard matched filtering with unlensed waveforms do not degrade, but are still detectable for events with high signal-to-noise ratio. We develop and test an agnostic detection method based on dynamic programming, which does not require a detailed model of the lensed waveforms. For pseudo-Jaffe lenses aligned up to the Einstein radius, we demonstrate that a pair of fully upgraded aLIGO/Virgo detectors can extract diffraction imprints from binary black hole mergers out to zs∼0.2z_s \sim 0.2--0.30.3. The prospect will improve dramatically for a third-generation detector for which binary black hole mergers out to zs∼2z_s \sim 2--44 will all become valuable sources.Comment: 14 pages including references; 8 figures; comments are welcom

    Transverse electric current induced by optically injected spin current in cross-shaped InGaAs/InAlAs system

    Get PDF
    We examine electric response of a linearly polarized light normally shed on a cross-shaped quasi 2-dimensional InGaAs/InAlAs system with structure inversion asymmetry. The photo-excited conduction electrons carry a pure spin current with in-plane spin polarization due to the Rashba spin-orbit interaction. We use Landauer-B\"{u}ttiker formalism to show that this spin current induces two inward or outward transverse charge currents, which are observable in experiments. This effect may serve as an experimental probe of certain types of spin current.Comment: 5 pages, 3 figure

    Dependability and Security in Medical Information System

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Medical Information Systems (MIS) help medical practice and health care significantly. Security and dependability are two increasingly important factors for MIS nowadays. In one hand, people would be willing to step into the MIS age only when their privacy and integrity can be protected and guaranteed with MIS systems. On the other hand, only secure and reliable MIS systems would provide safe and solid medical and health care service to people. In this paper, we discuss some new security and reliability technologies which are necessary for and can be integrated with existing MISs and make the systems highly secure and dependable. We also present an implemented Middleware architecture which has been integrated with the existing VISTA/CPRS system in the U.S. Department of Veterans Affairs seamlessly and transparently

    5-Bromo-4-iodo-2-methyl­aniline

    Get PDF
    The asymmetric unit of the title compound, C7H7BrIN, contains two independent mol­ecules, which are linked by weak N—H⋯N hydro­den-bonding inter­actions between the amino groups

    Theoretical Evidence for the Berry-Phase Mechanism of Anomalous Hall Transport: First-principles Studies on CuCr2_2Se4−x_{4-x}Brx_x

    Get PDF
    To justify the origin of anomalous Hall effect (AHE), it is highly desirable to have the system parameters tuned continuously. By quantitative calculations, we show that the doping dependent sign reversal in CuCr2_{2}Se4−x_{4-x}Brx_{x}, observed but not understood, is nothing but direct evidence for the Berry-Phase mechanism of AHE. The systematic calculations well explain the experiment data for the whole doping range where the impurity scattering rates is changed by several orders with Br substitution. Further sign change is also predicted, which may be tested by future experiments.Comment: 4 page

    Strong Gravitational Lensing of Gravitational Waves with TianQin

    Full text link
    When gravitational waves pass by a massive object on its way to the Earth, strong gravitational lensing effect will happen. Thus the GW signal will be amplified, deflected, and delayed in time. Through analysing the lensed GW waveform, physical properties of the lens can be inferred. On the other hand, neglecting lensing effects in the analysis of GW data may induce systematic errors in the estimating of source parameters. As a space-borne GW detector, TianQin will be launched in the 2030s. It is expected to detect dozens of MBHBs merger as far as z = 15, and thus will have high probability to detect at least one lensed event during the mission lifetime. In this article, we discuss the capability of TianQin to detect lensed MBHBs signals. Three lens models are considered in this work: the point mass model, the SIS model, and the NFW model. The sensitive frequency band for space-borne GW detectors is around milli-hertz, and the corresponding GW wavelength could be comparable to the lens gravitational length scale, which requires us to account for wave diffraction effects. In calculating lensed waveforms, we adopt the approximation of geometric optics at high frequencies to accelerate computation, while precisely evaluate the diffraction integral at low frequencies. Through a Fisher analysis, we analyse the accuracy to estimate the lens parameters. We find that the accuracy can reach to the level of 10^-3 for the mass of point mass and SIS lens, and to the level of 10^-5 for the density of NFW lens. We also assess the impact on the accurate of estimating the source parameters, and find that the improvement of the accuracy is dominated by the increasing of SNR.Comment: 12 pages, 8 figure
    • …
    corecore