28 research outputs found

    Field-free platform for Majorana-like zero mode in superconductors with a topological surface state

    Get PDF
    Superconducting materials exhibiting topological properties are emerging as an exciting platform to realize fundamentally new excitations from topological quantum states of matter. In this letter, we explore the possibility of a field-free platform for generating Majorana zero energy excitations by depositing magnetic Fe impurities on the surface of candidate topological superconductors, LiFeAs and PbTaSe2. We use scanning tunneling microscopy to probe localized states induced at the Fe adatoms on the atomic scale and at sub-Kelvin temperatures. We find that each Fe adatom generates a striking zero-energy bound state inside the superconducting gap, which do not split in magnetic fields up to 8 T, underlining a nontrivial topological origin. Our findings point to magnetic Fe adatoms evaporated on bulk superconductors with topological surface states for exploring Majorana zero modes and quantum information science under field-free conditions

    Discovery of a Topological Charge Density Wave

    Full text link
    Charge density waves (CDWs) appear in numerous condensed matter platforms, ranging from high-Tc superconductors to quantum Hall systems. Despite such ubiquity, there has been a lack of direct experimental study on boundary states that can uniquely stem from the charge order. Here, using scanning tunneling microscopy, we directly visualize the bulk and boundary phenomenology of CDW in a topological material, Ta2Se8I. Below the transition temperature (TCDW = 260 K), tunneling spectra on an atomically resolved lattice reveal a large insulating gap in the bulk and on the surface, exceeding 500 meV, surpassing predictions from standard weakly-coupled mean-field theory. Spectroscopic imaging confirms the presence of CDW, with LDOS maxima at the conduction band corresponding to the LDOS minima at the valence band, thus revealing a {\pi} phase difference in the respective CDW order. Concomitantly, at a monolayer step edge, we detect an in-gap boundary mode with modulations along the edge that match the CDW wavevector along the edge. Intriguingly, the phase of the edge state modulation shifts by {\pi} within the charge order gap, connecting the fully gapped bulk (and surface) conduction and valence bands via a smooth energy-phase relation. This bears similarity to the topological spectral flow of edge modes, where the boundary modes bridge the gapped bulk modes in energy and momentum magnitude but in Ta2Se8I, the connectivity distinctly occurs in energy and momentum phase. Notably, our temperature-dependent measurements indicate a vanishing of the insulating gap and the in-gap edge state above TCDW, suggesting their direct relation to CDW. The theoretical analysis also indicates that the observed boundary mode is topological and linked to CDW.Comment: Nature Physics (2024); in pres

    Intrinsic nature of chiral charge order in the kagome superconductor Rb V3Sb5

    Full text link
    Superconductors with kagome lattices have been identified for over 40 years, with a superconducting transition temperature Tc up to 7 K. Recently, certain kagome superconductors have been found to exhibit an exotic charge order, which intertwines with superconductivity and persists to a temperature being one order of magnitude higher than Tc. In this work, we use scanning tunneling microscopy to study the charge order in kagome superconductor RbV3Sb5. We observe both a 2Ă—2 chiral charge order and nematic surface superlattices (predominantly 1Ă—4). We find that the 2Ă—2 charge order exhibits intrinsic chirality with magnetic field tunability. Defects can scatter electrons to introduce standing waves, which couple with the charge order to cause extrinsic effects. While the chiral charge order resembles that discovered in KV3Sb5, it further interacts with the nematic surface superlattices that are absent in KV3Sb5 but exist in CsV3Sb5
    corecore