214 research outputs found

    Restrictions and Stability of Time-Delayed Dynamical Networks

    Full text link
    This paper deals with the global stability of time-delayed dynamical networks. We show that for a time-delayed dynamical network with non-distributed delays the network and the corresponding non-delayed network are both either globally stable or unstable. We demonstrate that this may not be the case if the network's delays are distributed. The main tool in our analysis is a new procedure of dynamical network restrictions. This procedure is useful in that it allows for improved estimates of a dynamical network's global stability. Moreover, it is a computationally simpler and much more effective means of analyzing the stability of dynamical networks than the procedure of isospectral network expansions introduced in [Isospectral graph transformations, spectral equivalence, and global stability of dynamical networks. Nonlinearity, 25 (2012) 211-254]. The effectiveness of our approach is illustrated by applications to various classes of Cohen-Grossberg neural networks.Comment: 32 pages, 9 figure

    Investigation to the deep center related properties of low temperature grown InPBi with Hall and photoluminescence

    Get PDF
    InP1-xBix epilayers with bismuth (Bi) concentration x= 1.0% were grown on InP by gas source molecular beam epitaxy (GS-MBE) at low temperature (LT). Bi incorporation decreased the intrinsic free electron concentration of low temperature grown InP indicated by hall analysis. It is concluded that deep level center was introduced by Bi. Influence of Si doping on the InP1-xBix films Photoluminescence (PL) was investigated. N-type doping in the InP1-xBix epilayers was found to be effective at PL enhancement. Blue shift of InPBi PL emission wavelength was observed as the Si doping concentration increasing. Two independent peaks were fitted and their temperature dependence behavior was observed to be distinct obviously. Two individual radiative recombination processes were expected to be involved

    A prospective analysis of circulating saturated and monounsaturated fatty acids and risk of non-Hodgkin lymphoma

    Get PDF
    Circulating saturated (SFA) and monounsaturated fatty acids (MUFA), which are predominantly derived from endogenous metabolism, may influence non-Hodgkin lymphoma (NHL) risk by modulating inflammation or lymphocyte membrane stability. However, few biomarker studies have evaluated NHL risk associated with these fats. We conducted a prospective study of 583 incident NHL cases and 583 individually matched controls with archived pre-diagnosis red blood cell (RBC) specimens in the Nurses\u27 Health Study (NHS) and Health Professionals Follow-up Study (HPFS). RBC membrane fatty acid levels were measured using gas chromatography. Using multivariable logistic regression, we estimated odds ratios (OR) and 95% confidence intervals (CI) for risk of NHL and major NHL subtypes including T cell NHL (T-NHL), B cell NHL (B-NHL) and three individual B-NHLs: chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma. RBC SFA and MUFA levels were not associated with NHL risk overall. However, RBC very long chain SFA levels (VLCSFA; 20:0, 22:0, 23:0) were inversely associated with B-NHLs other than CLL/SLL; ORs (95% CIs) per standard deviation (SD) increase in level were 0.81 (0.70, 0.95) for 20:0, 0.82 (0.70, 0.95) for 22:0, and 0.82 (0.70, 0.96) for 23:0 VLCSFA. Also, both VLCSFA and MUFA levels were inversely associated with T-NHL [ORs (95% CIs) per SD: VLCSFA, 0.63 (0.40, 0.99); MUFA, 0.63 (0.40, 0.99)]. The findings of inverse associations for VLCSFAs with B-NHLs other than CLL/SLL and for VLCSFA and MUFA with T-NHL suggest an influence of fatty acid metabolism on lymphomagenesis

    Strain and localization effects in InGaAs(N) quantum wells: Tuning the magnetic response

    Get PDF
    We investigated effects of localization and strain on the optical and magneto-optical properties of diluted nitrogen III-V quantum wells theoretically and experimentally. High-resolution x-ray diffraction, photoluminescence (PL), and magneto-PL measurements under high magnetic fields up to 15 T were performed at low temperatures. Bir-Pikus Hamiltonian formalism was used to study the influence of strain, confinement, and localization effects. The circularly polarized magneto-PL was interpreted considering localization aspects in the valence band ground state. An anomalous behavior of the electron-hole pair magnetic shift was observed at low magnetic fields, ascribed to the increase in the exciton reduced mass due to the negative effective mass of the valence band ground state

    Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity

    Get PDF
    S31-201 (NSC 74859) is a chemical probe inhibitor of Stat3 activity, which was identified from the National Cancer Institute chemical libraries by using structure-based virtual screening with a computer model of the Stat3 SH2 domain bound to its Stat3 phosphotyrosine peptide derived from the x-ray crystal structure of the Stat3 beta homodimer. S31-201 inhibits Stat3-Stat3 complex formation and Stat3 DNA-binding and transcriptional activities. Furthermore, S31-201 inhibits growth and induces apoptosis preferentially in tumor cells that contain persistently activated Stat3. Constitutively climerized and active Stat3C and Stat3 SH2 domain rescue tumor cells from S31-201-induced apoptosis. Finally, S31-201 inhibits the expression of the Stat3-regulated genes encoding cyclin D1, BcI-xL, and survivin and inhibits the growth of human breast tumors in vivo. These findings strongly suggest that the antitumor activity of S31-201 is mediated in part through inhibition of aberrant Stat3 activation and provide the proof-of-concept for the potential clinical use of Stat3 inhibitors such as S31-201 in tumors harboring aberrant Stat3
    • …
    corecore