78 research outputs found

    The Characteristics of Mechanical Grinding on Kaolinite Structure and Thermal Behavior

    Get PDF
    AbstractThe relationship between kaolinite structure and the temperature of thermal transformation of phase was discussed in this paper through grinding and heating treatment. The results show that the structure of kaolinite is destroyed rapidly with increasing mechanical grinding time, and the kaolinite structure collapses completely after 1h grinding. The temperature of thermal transformation of phase decreases with the destruction of kaolinite structure. This result has a great significance for the utilization of kaolinite associated with coal measures in China

    Structural optimization and biological evaluation of 1,5-disubstituted pyrazole-3-carboxamines as potent inhibitors of human 5-lipoxygenase

    Get PDF
    AbstractHuman 5-lipoxygenase (5-LOX) is a well-validated drug target and its inhibitors are potential drugs for treating leukotriene-related disorders. Our previous work on structural optimization of the hit compound 2 from our in-house collection identified two lead compounds, 3a and 3b, exhibiting a potent inhibitory profile against 5-LOX with IC50 values less than 1µmol/L in cell-based assays. Here, we further optimized these compounds to prepare a class of novel pyrazole derivatives by opening the fused-ring system. Several new compounds exhibited more potent inhibitory activity than the lead compounds against 5-LOX. In particular, compound 4e not only suppressed lipopolysaccharide-induced inflammation in brain inflammatory cells and protected neurons from oxidative toxicity, but also significantly decreased infarct damage in a mouse model of cerebral ischemia. Molecular docking analysis further confirmed the consistency of our theoretical results and experimental data. In conclusion, the excellent in vitro and in vivo inhibitory activities of these compounds against 5-LOX suggested that these novel chemical structures have a promising therapeutic potential to treat leukotriene-related disorders

    Improvement of hydro-turbine draft tube efficiency using vortex generator

    No full text
    Computational fluid dynamics simulation was employed in a hydraulic turbine (from inlet tube to draft tube). The calculated turbine efficiencies were compared with measured results, and the relative error is 1.12%. In order to improve the efficiency of the hydraulic turbine, 15 kinds of vortex generators were installed at the vortex development section of the draft tube, and all of them were simulated using the same method. Based on the turbine efficiencies, distribution of streamlines, velocities, and pressures in the draft tube, an optimal draft tube was found, which can increase the efficiency of this hydraulic turbine more than 1.5%. The efficiency of turbine with the optimal draft tube, draft tube with four pairs of middle-sized vortex generator, and draft tube without vortex generator under different heads of turbine (5–14 m) was calculated, and it was verified that these two kinds of draft tubes can increase the efficiency of this turbine in every situation

    Global evidence on nitrogen saturation of terrestrial ecosystem net primary productivity

    No full text
    The continually increasing nitrogen (N) deposition is expected to increase ecosystem aboveground net primary production (ANPP) until it exceeds plant N demand, causing a nonlinear response and N saturation for ANPP. However, the nonlinear response of ANPP to N addition gradient and the N saturation threshold have not been comprehensively quantified yet for terrestrial ecosystems. In this study, we compiled a global dataset of 44 experimental studies with at least three levels of N treatment. Nitrogen response efficiency (NRE, ANPP response per unit N addition) and the difference in NRE between N levels (ΔNRE) were quantified to test the nonlinearity in ANPP response. We found a universal response pattern of N saturation for ANPP with N addition gradient across all the studies and in different ecosystems. An averaged N saturation threshold for ANPP nonlinearity was found at the N addition rates of 5–6 g m ^−2 yr ^−1 . The extent to which ANPP approaches  N saturation varied with ecosystem type, N addition rate and environmental factors. ANPP in grasslands had lower NRE than those in forests and wetlands. Plant NRE decreased with reduced soil C:N ratio, and was the highest at intermediate levels of rainfall and temperature. These findings suggest that ANPP in grassland or the ecosystems with low soil C:N ratio (or low and high rainfall or temperature) is easier to be saturated with N enrichment. Overall, these results indicate that the beneficial effect of N deposition on plant productivity likely diminishes with continuous N enrichment when N loading surpasses the N saturation threshold for ANPP nonlinearity

    Theoretical Model and Numerical Analysis of the Tip Leakage Vortex Variations of a Centrifugal Compressor

    No full text
    A centrifugal compressor of a micro turbine generator system is investigated by the theoretical model and numerical analysis to explore the characteristics of the tip leakage vortex as the centrifugal compressor approaches stall. The numerical simulation results show the cross-sectional shape of the tip leakage vortex is elliptical, and its long and short axes are gradually stretched as the compressor approaches stall. Moreover, the vortex trajectory is inclined to the pressure side of the adjacent blade. In addition, the Kirchhoff elliptical vortex model is introduced to analyze the flow passage constriction effect, the passage vortex squeezing effect, and the leakage flow translation effect. Results show that there is no upper limit for the flow passage constriction effect on the tip leakage vortex. Furthermore, relative to the original vortex, the minimum constriction effect depends on the axis ratio of the elliptical tip leakage vortex. The passage vortex has an expansion effect on the tip leakage vortex rather than a squeezing effect, which is limited and also depends on the axis ratio of the ellipse. However, the effect magnitude of the leakage flow depends on the scales both of the long and short axes, which also have no upper limit

    Introduction of DMD Method to Study the Dynamic Structures of a Three-Dimensional Centrifugal Compressor with and without Flow Control

    No full text
    The flow structures around the blade tip, mainly large-scale leakage vortex, exert a great influence on compressor performance. By applying unsteady jet control technology at the blade tip in this study, the performance of the compressor can be greatly improved. A numerical simulation is conducted to study the flow characteristics of a centrifugal compressor with and without a flow control. The complex flow structures cause great difficulties in the analysis of the dynamic behavior and flow control mechanism. Thus, we introduced a dynamic flow field analysis technology called dynamic mode decomposition (DMD). The global spectrums with different global energy norms and the coherent structures with different scales can be obtained through the DMD analysis of the three-dimensional controlled and uncontrolled compressors. The results show that the coherent structures are homogeneous in the controlled compressor. The leakage vortex is weakened, and its influence range of unsteady fluctuation is reduced in the controlled compressor. The effective flow control created uniform vortex structures and improved the overall order of the flow field in the compressor. This research provides a feasible direction for future flow control applications, such as transferring the energy of the dominant vortices to small-scale vortices

    Seasonal Eco-Physiology Characteristics of Four Evergreen <i>Rhododendron</i> Species to the Subalpine Habitats

    No full text
    Four evergreen broadleaf Rhododendron spp. (Rhododendrons), namely, Rhododendron aganniphum, R. nyingchiense, R. wardii, and R. triflorum, occur in harsh subalpine habitats in the southwest Qinghai-Tibet Plateau (QTP), China. Considering that the four Rhododendrons cannot escape their unique environment, they must evolve a set of adaptations to survive, but the information is lacking. To uncover their physiological adaptation characteristics, in the present study, we monitored their physiological characteristics by determination of their seasonal variation in antioxidant enzyme activity, osmotic adjustment substrates, and carbohydrate contents, and their pigment content and photosynthetic efficiency. The results showed that superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) activities and proline content of four Rhododendrons had a significant difference in autumn and were insignificant in summer. Specifically, R. aganniphum had the maximum protective enzyme activity and proline content in winter as well as chl a, b, and car contents. The values of maximal quantum yield (Fv/Fm), photochemical efficiency (ΦPSII), and non-photochemical quenching (NPQ) of four Rhododendrons were significantly higher in summer than in other seasons. The lower qP indicated the four Rhododendrons were susceptible to photoinhibition. Overall, the four Rhododendrons had similar physical characteristics in subalpine habitats. The parameters of the maximum quantum yield of photosystem II (PSII), the actual quantum yield of PSII, the non-photochemical chlorophyll fluorescence quenching, and chlorophyll a content increased in summer. Meanwhile, the protective enzyme activity and total soluble sugar content, proline content, and carotenoid content increased in spring, autumn, and winter. These results suggested that the four Rhododendrons can adapt to subalpine habitats by heat dissipation to avoid the damage of excessive radiation during the warm season while scavenging reactive oxygen and increasing the intracellular fluid concentration to avoid damage caused by chilling temperatures during the cold seasons. These findings would provide a reference for the conservation and application of these valuable ornamental evergreen broadleaf Rhododendrons, and enrich theory of plant eco-physiology in the high altitudes of the QTP
    • …
    corecore