13,094 research outputs found

    Influence of Ni doping on the electronic structure of Ni_2MnGa

    Full text link
    The modifications in the electronic structure of Ni_{2+x}Mn_{1-x}Ga by Ni doping have been studied using full potential linearized augmented plane wave method and ultra-violet photoemission spectroscopy. Ni 3d related electron states appear due to formation of Ni clusters. We show the possibility of changing the minority-spin DOS with Ni doping, while the majority-spin DOS remains almost unchanged. The total magnetic moment decreases with excess Ni. The total energy calculations corroborate the experimentally reported changes in the Curie temperature and the martensitic transition temperature with x.Comment: 4 pages, 4 figures, accepted in Phys. Rev.

    Ab initio Hartree-Fock Born effective charges of LiH, LiF, LiCl, NaF, and NaCl

    Full text link
    We use the Berry-phase-based theory of macroscopic polarization of dielectric crystals formulated in terms of Wannier functions, and state-of-the-art Gaussian basis functions, to obtain benchmark ab initio Hartree-Fock values of the Born effective charges of ionic compounds LiH, LiF, LiCl, NaF, and NaCl. We find excellent agreement with the experimental values for all the compounds except LiCl and NaCl, for which the disagreement with the experiments is close to 10% and 16%, respectively. This may imply the importance of many-body effects in those systems.Comment: 11 pages, Revtex, 2 figures (included), to appear in Phys. Rev. B April 15, 200

    Return to return point memory

    Get PDF
    We describe a new class of systems exhibiting return point memory (RPM) that are different from those discussed before in the context of ferromagnets. We show numerically that one dimensional random Ising antiferromagnets have RPM, when configurations evolve from a large field. However, RPM is violated when started from some stable configurations at finite field unlike in the ferromagnetic case. This implies that the standard approach to understanding ferromagnetic RPM systems will fail for this case. We also demonstrate RPM with a set of variables that keep track of spin flips at each site. Conventional RPM for the spin configuration is a projection of this result, suggesting that spin flip variables might be a more fundamental representation of the dynamics. We also present a mapping that embeds the antiferromagnetic chain in a two dimensional ferromagnetic model, and prove RPM for spin exchange dynamics in the interior of the chain with this mapping

    Differentiation of pathogenic amoebae: encystation and excystation ofacanthamoeba culbertsoni - a model

    Get PDF
    Differentiation into dormant cysts and vegetative trophozoites is an inherent character intimately associated with the life cycle and infectivity of pathogenic amoebae. In the case of human intestinal amoebiasis encystation and excystation are of immediate relevance to the process of transmission of the disease from healthy carriers to susceptible individuals. Using a pathogenic free living amoebaAcanthamoeba culbertsoni as a model, considerable progress has been achieved in understanding the mechanism and control of the process of differentiation. The turnover of the regulatory molecule cyclic 3: '5' adenosine monophosphate is responsible for triggering the process of encystation. Amoebae bind effector molecules such as biogenic amines to a membrane localized receptor which itself resembles the β-adrenergic receptor of mammalian organisms. The activation of adenylate cyclase or inhibition of cyclic AMP phosphodiesterase maintain the dynamic intracellular cyclic AMP. The cytosol fraction of amoebae has a cyclic AMP binding protein. During encystation, enzymes needed for synthesis of cellulose and glycoproteins are induced. Control is exercised at transcriptional level and the process is subject to catabolic repression. Excystation of mature amoebic cysts is mediated by glutamic acid and certain other amino acids by an as yet unelucidated mechanism. During excystation there is dormancy break, induction of deploymerizing enzymesviz. two proteases, a cellulase and a chitinase. The empty cysts or cyst walls are digested by these enzymes and their break down products are used for cellular growth. By invoking a flip-flop mechanism of repression and derepression some plausible explanation can be offered for the cascade of biochemical events that sets in when amoeba is 'turned on' to encystation or excystation

    Size, shape and surface chemistry of nano-gold dictate its cellular interactions, uptake and toxicity

    Get PDF
    Colloidal gold is undoubtedly one of the most extensively studied nanomaterials, with 1000s of different protocols currently available to synthesise gold nanoparticles (AuNPs). While developments in the synthesis of AuNPs have progressed rapidly in recent years, our understanding of their biological impact, with particular respect to the effect of shape, size, surface characteristics and aggregation states, has struggled to keep pace. It is generally agreed that when AuNPs are exposed to biological systems, these parameters directly influence their pharmacokinetic and pharmacodynamic properties by influencing AuNPs distribution, circulation time, metabolism and excretion in biological systems. However, the rules governing these properties, and the science behind them, are poorly understood. Therefore, a systematic understanding of the implications of these variables at the nano-bio interface has recently become a topic of major interest. This Review Article attempts to ignite a discussion around the influence of different physico-chemical parameters on biological activity of AuNPs, while focussing on critical aspects of cellular interactions, uptake and cytotoxicity. The review also discusses emerging trends in AuNP uptake and toxicity that are leading to technological advances through AuNP-based therapy, diagnostics and imaging

    Hysteresis in Random Field XY and Heisenberg Models: Mean Field Theory and Simulations at Zero Temperature

    Full text link
    We examine zero temperature hysteresis in random field XY and Heisenberg models in the zero frequency limit of a cyclic driving field. Exact expressions for hysteresis loops are obtained in the mean field approximation. These show rather unusual features. We also perform simulations of the two models on a simple cubic lattice and compare them with the predictions of the mean field theory.Comment: replaced by the published versio

    Effect of magnetic field on the phase transition in a dusty plasma

    Full text link
    The formation of self-consistent crystalline structure is a well-known phenomenon in complex plasmas. In most experiments the pressure and rf power are the main controlling parameters in determining the phase of the system. We have studied the effect of externally applied magnetic field on the configuration of plasma crystals, suspended in the sheath of a radio-frequency discharge using the Magnetized Dusty Plasma Experiment (MDPX) device. Experiments are performed at a fixed pressure and rf power where a crystalline structure is formed within a confining ring. The magnetic field is then increased from 0 to 1.28 T. We report on the breakdown of the crystalline structure with increasing magnetic field. The magnetic field affects the dynamics of the plasma particles and first leads to a rotation of the crystal. At higher magnetic field, there is a radial variation (shear) in the angular velocity of the moving particles which we believe leads to the melting of the crystal. This melting is confirmed by evaluating the variation of the pair correlation function as a function of magnetic field.Comment: 9 pages, 5 figure

    Modal wet processing – A novel approach

    Get PDF
    In this study, various pretreatment parameters have been optimized for greige woven modal fabric in an industrial set-up of semi-continuous and continuous pretreatment range in order to overcome its processing issues without altering the inherent fabric softness. Various recipes of pad-batch desizing, pad-steam bleaching and cold causticization have been attempted and the results are compared with exhaust pretreatment. The pretreated fabric is then subjected to dyeing with. a reactive dye. The performance of the processed fabric has been evaluated in terms of water absorbency, tensile strength, CIE whiteness index, and tegewa rating. Wash and crock fastness of the subsequently dyed fabric are also evaluated. The XRD spectrum indicates marginal increase in the crystallinity of modal fabric post causticization. The results are found encouraging in terms of good and uniform depth of colour with very little deterioration in the desired fabric properties
    corecore