13,121 research outputs found

    Superspace Unitary Operator in QED with Dirac and Complex Scalar Fields: Superfield Approach

    Full text link
    We exploit the strength of the superspace (SUSP) unitary operator to obtain the results of the application of the horizontality condition (HC) within the framework of augmented version of superfield formalism that is applied to the interacting systems of Abelian 1-form gauge theories where the U(1) Abelian 1-form gauge field couples to the Dirac and complex scalar fields in the physical four (3 + 1)-dimensions of spacetime. These interacting theories are generalized onto a (4, 2)-dimensional supermanifold that is parametrized by the four (3 + 1)-dimensional (4D) spacetime variables and a pair of Grassmannian variables. To derive the (anti-)BRST symmetries for the matter fields, we impose the gauge invariant restrictions (GIRs) on the superfields defined on the (4, 2)-dimensional supermanifold. We discuss various outcomes that emerge out from our knowledge of the SUSP unitary operator and its hermitian conjugate. The latter operator is derived without imposing any operation of hermitian conjugation on the parameters and fields of our theory from outside. This is an interesting observation in our present investigation.Comment: LaTeX file, 11 pages, journal versio

    Self-Dual Chiral Boson: Augmented Superfield Approach

    Get PDF
    We exploit the standard tools and techniques of the augmented version of Bonora-Tonin (BT) superfield formalism to derive the off-shell nilpotent and absolutely anticommuting (anti-)BRST and (anti-)co-BRST symmetry transformations for the Becchi-Rouet-Stora-Tyutin (BRST) invariant Lagrangian density of a self-dual bosonic system. In the derivation of the full set of the above transformations, we invoke the (dual-)horizontality conditions, (anti-)BRST and (anti-)co-BRST invariant restrictions on the superfields that are defined on the (2, 2)-dimensional supermanifold. The latter is parameterized by the bosonic variable x^\mu\,(\mu = 0,\, 1) and a pair of Grassmanian variables \theta and \bar\theta (with \theta^2 = \bar\theta^2 = 0 and \theta\bar\theta + \bar\theta\theta = 0). The dynamics of this system is such that, instead of the full (2, 2) dimensional superspace coordinates (x^\mu, \theta, \bar\theta), we require only the specific (1, 2)-dimensional super-subspace variables (t, \theta, \bar\theta) for its description. This is a novel observation in the context of superfield approach to BRST formalism. The application of the dual-horizontality condition, in the derivation of a set of proper (anti-)co-BRST symmetries, is also one of the new ingredients of our present endeavor where we have exploited the augmented version of superfield formalism which is geometrically very intuitive.Comment: LaTeX file, 27 pages, minor modifications, Journal reference is give

    Analysis of wasp-waisted hysteresis loops in magnetic rocks

    Full text link
    The random-field Ising model of hysteresis is generalized to dilute magnets and solved on a Bethe lattice. Exact expressions for the major and minor hysteresis loops are obtained. In the strongly dilute limit the model provides a simple and useful understanding of the shapes of hysteresis loops in magnetic rock samples.Comment: 11 pages, 4 figure

    Ab initio Wannier-function-based correlated calculations of Born effective charges of crystalline Li2_{2}O and LiCl

    Full text link
    In this paper we have used our recently developed ab initio Wannier-function-based methodology to perform extensive Hartree-Fock and correlated calculations on Li2_{2}O and LiCl to compute their Born effective charges. Results thus obtained are in very good agreement with the experiments. In particular, for the case of Li2_{2}O, we resolve a controversy originating in the experiment of Osaka and Shindo {[}Solid State Commun. 51 (1984) 421] who had predicted the effective charge of Li ions to be in the range 0.58--0.61, a value much smaller compared to its nominal value of unity, thereby, suggesting that the bonding in the material could be partially covalent. We demonstrate that effective charge computed by Osaka and Shindo is the Szigeti charge, and once the Born charge is computed, it is in excellent agreement with our computed value. Mulliken population analysis of Li2_{2}O also confirms ionic nature of the bonding in the substance.Comment: 11 pages, 1 figure. To appear in Phys. Rev. B (Feb 2008

    Theory of nonlinear optical properties of phenyl-substituted polyacetylenes

    Full text link
    In this paper we present a theoretical study of the third-order nonlinear optical properties of poly(diphenyl)polyacetylene (PDPA) pertaining to the third-harmonic-generation (THG) process. We study the aforesaid process in PDPA's using both the independent electron Hueckel model, as well as correlated-electron Pariser-Parr-Pople (P-P-P) model. The P-P-P model based calculations were performed using various configuration interaction (CI) methods such as the the multi-reference-singles-doubles CI (MRSDCI), and the quadruples-CI (QCI) methods, and the both longitudinal and the transverse components of third-order susceptibilities were computed. The Hueckel model calculations were performed on oligo-PDPA's containing up to fifty repeat units, while correlated calculations were performed for oligomers containing up to ten unit cells. At all levels of theory, the material exhibits highly anisotropic nonlinear optical response, in keeping with its structural anisotropy. We argue that the aforesaid anisotropy can be divided over two natural energy scales: (a) the low-energy response is predominantly longitudinal and is qualitatively similar to that of polyenes, while (b) the high-energy response is mainly transverse, and is qualitatively similar to that of trans-stilbene.Comment: 13 pages, 7 figures (included), to appear in Physical Review B (April 15, 2004

    Energetics and electronic structure of phenyl-disubstituted polyacetylene: A first-principles study

    Full text link
    Phenyl-disubstituted polyacetylene (PDPA) is an organic semiconductor which has been studied during the last years for its efficient photo-luminescence. In contrast, the molecular geometry, providing the basis for the electronic and optical properties, has been hardly investigated. In this paper, we apply a density-functional-theory based molecular-dynamics approach to reveal the molecular structure of PDPA in detail. We find that oligomers of this material are limited in length, being stable only up to eight repeat units, while the polymer is energetically unfavorable. These facts, which are in excellent agreement with experimental findings, are explained through a detailed analysis of the bond lengths. A consequence of the latter is the appearance of pronounced torsion angles of the phenyl rings with respect to the plane of the polyene backbone, ranging from 5555^{\circ} up to 9595^{\circ}. We point out that such large torsion angles do not destroy the conjugation of the π\pi electrons from the backbone to the side phenyl rings, as is evident from the electronic charge density.Comment: 9 pages, 7 figures, accepted for publication in Phys. Rev.

    Broadband study of blazar 1ES 1959+650 during flaring state in 2016

    Full text link
    Aim : The nearby TeV blazar 1ES 1959+650 (z=0.047) was reported to be in flaring state during June - July 2016 by Fermi-LAT, FACT, MAGIC and VERITAS collaborations. We studied the spectral energy distributions (SEDs) in different states of the flare during MJD 57530 - 57589 using simultaneous multiwaveband data to understand the possible broadband emission scenario during the flare. Methods : The UV/optical and X-ray data from UVOT and XRT respectively on board Swift and high energy γ\gamma-ray data from Fermi-LAT are used to generate multiwaveband lightcurves as well as to obtain high flux states and quiescent state SEDs. The correlation and lag between different energy bands is quantified using discrete correlation function. The synchrotron self Compton (SSC) model was used to reproduce the observed SEDs during flaring and quiescent states of the source. Results : A decent correlation is seen between X-ray and high energy γ\gamma-ray fluxes. The spectral hardening with increase in the flux is seen in X-ray band. The powerlaw index vs flux plot in γ\gamma-ray band indicates the different emission regions for 0.1 - 3 GeV and 3-300 GeV energy photons. Two zone SSC model satisfactorily fits the observed broadband SEDs. The inner zone is mainly responsible for producing synchrotron peak and high energy γ\gamma-ray part of the SED in all states. The second zone is mainly required to produce less variable optical/UV and low energy γ\gamma-ray emission. Conclusions : Conventional single zone SSC model does not satisfactorily explain broadband emission during observation period considered. There is an indication of two emission zones in the jet which are responsible for producing broadband emission from optical to high energy γ\gamma-rays.Comment: 11 pages, 12 figures, Accepted in A&

    Ab initio Hartree-Fock Born effective charges of LiH, LiF, LiCl, NaF, and NaCl

    Full text link
    We use the Berry-phase-based theory of macroscopic polarization of dielectric crystals formulated in terms of Wannier functions, and state-of-the-art Gaussian basis functions, to obtain benchmark ab initio Hartree-Fock values of the Born effective charges of ionic compounds LiH, LiF, LiCl, NaF, and NaCl. We find excellent agreement with the experimental values for all the compounds except LiCl and NaCl, for which the disagreement with the experiments is close to 10% and 16%, respectively. This may imply the importance of many-body effects in those systems.Comment: 11 pages, Revtex, 2 figures (included), to appear in Phys. Rev. B April 15, 200

    Dynamics of spin 1/2 quantum plasmas

    Get PDF
    The fully nonlinear governing equations for spin 1/2 quantum plasmas are presented. Starting from the Pauli equation, the relevant plasma equations are derived, and it is shown that nontrivial quantum spin couplings arise, enabling studies of the combined collective and spin dynamics. The linear response of the quantum plasma in an electron--ion system is obtained and analyzed. Applications of the theory to solid state and astrophysical systems as well as dusty plasmas are pointed out.Comment: 4 pages, 2 figures, to appear in Physical Review Letter
    corecore