26 research outputs found

    Binge ethanol intake in chronically exposed rat liver decreases LDL-receptor and increases angiotensinogen gene expression

    No full text
    AIM: To investigated the status of low-density lipoprotein (LDL)-receptor and angiotensionogen gene expression in rats treated chronically with ethanol followed by binge administration, a model that mimics the human scenario

    Binge ethanol and liver: new molecular developments

    No full text
    Binge consumption of alcohol is an alarming global health problem. Binge (acute) ethanol (EtOH) is implicated in the pathophysiology of alcoholic liver disease (ALD). New studies from experimental animals and from humans indicate that binge EtOH has profound effects on immunological, signaling, and epigenetic parameters of the liver. This is in addition to the known metabolic effects of acute EtOH. Binge EtOH alters the levels of several cellular components and dramatically amplifies liver injury in chronically EtOH exposed liver. These studies highlight the importance of molecular investigations into binge effects of EtOH for a better understanding of ALD and also to develop therapeutic strategies to control it. This review summarizes these recent developments

    A proteomic analysis of liver after ethanol binge in chronically ethanol treated rats

    Get PDF
    Abstract Background Binge ethanol in rats after chronic ethanol exposure augments necrosis and steatosis in the liver. In this study, two-dimensional gel electrophoresis proteomic profiles of liver of control, chronic ethanol, control-binge, and chronic ethanol- binge were compared. Results The proteomic analysis identified changes in protein abundance among the groups. The levels of carbonic anhydrase 3 (CA3) were decreased after chronic ethanol and decreased further after chronic ethanol-binge. Ethanol binge alone in control rats had no effect on this protein suggesting its possible role in increased susceptibility to injury by binge after chonic ethanol treatment. A protein spot, in which both cytosolic isocitrate dehydrogenase (IDH1) and glutamine synthetase (GS) were identified, showed a small decrease after chronic ethanol binge but western blot demonstrated significant decrease only for glutamine synthetase in chronic ethanol treated rats. The level of gluathione S-transferase mu isoform (GSTM1) increased after chronic ethanol but was lower after chronic ethanol-binge compared to chronic ethanol treatment. The protein levels of the basic form of protein disulfide isomerase associated protein 3 (PDIA3) were significantly decreased and the acidic forms were increased after chronic ethanol- binge but not in chronic ethanol treated rats or ethanol binge in control rats. The significant changes in proteome profile in chronic ethanol binge were accompanied by a marked increase in liver injury as evidenced by enhanced steatosis, necrosis, increased 4-hydroxynonenal labeled proteins, CYP2E1 expression, and decreased histone H2AX phosphorylation. Conclusions Given the role of CA3, IDH1 and GST in oxidative stress; PDIA3 in protein quality control, apoptosis and DNA repair and decreased glutamine synthetase as a sensitive marker of pericentral liver injury this proteome study of chronic ethanol-binge rat model identifies these proteins for the first time as molecular targets with potential role in progression of liver injury by binge ethanol drinking.</p

    High Intrinsic Aerobic Capacity Protects against Ethanol-Induced Hepatic Injury and Metabolic Dysfunction: Study Using High Capacity Runner Rat Model

    No full text
    Rats artificially selected over several generations for high intrinsic endurance/aerobic capacity resulting in high capacity runners (HCR) has been developed to study the links between high aerobic fitness and protection from metabolic diseases (Wisloff et al., Science, 2005). We have previously shown that the HCR strain have elevated hepatic mitochondrial content and oxidative capacity. In this study, we tested if the elevated hepatic mitochondrial content in the HCR rat would provide “metabolic protection” from chronic ethanol-induced hepatic steatosis and injury. The Leiber-Decarli liquid diet with ethanol (7% v/v; HCR-E) and without (HCR-C) was given to HCR rats (n = 8 per group) from 14 to 20 weeks of age that were weight matched and pair-fed to assure isocaloric intake. Hepatic triglyceride (TG) content and macro- and microvesicular steatosis were significantly greater in HCR-E compared with HCR-C (p &lt; 0.05). In addition, hepatic superoxide dismutase activity and glutathione levels were significantly (p &lt; 0.05) reduced in the HCR-E rats. This hepatic phenotype also was associated with reduced total hepatic fatty acid oxidation (p = 0.03) and ß-hydroxyacyl-CoA dehydrogenase activity (p = 0.01), and reductions in microsomal triglyceride transfer protein and apoB-100 protein content (p = 0.01) in HCR-E animals. However, despite these documented hepatic alterations, ethanol ingestion failed to induce significant hepatic liver injury, including no changes in hepatic inflammation, or serum alanine amino transferase (ALTs), free fatty acids (FFAs), triglycerides (TGs), insulin, or glucose. High intrinsic aerobic fitness did not reduce ethanol-induced hepatic steatosis, but protected against ethanol-induced hepatic injury and systemic metabolic dysfunction in a high aerobic capacity rat model
    corecore