22,792 research outputs found
Spinodal decomposition: An alternate mechanism of phase conversion
The scenario of homogeneous nucleation is investigated for a first order
quark-hadron phase transition in a rapidly expanding background of quark gluon
plasma. It is found that significant supercooling is possible before
hadronization begins. This study also suggests that spinodal decomposition
competes with nucleation and may provide an alternative mechanism for phase
conversion.Comment: LaTeX, 4 pages with 3 Postscript figures. Talk given at International
Conference on Physics and Astrophysics of Quark Gluon Plasma (ICPAQGP 2001),
Nov. 26-30, 2001, Jaipur, Indi
Linear and nonlinear properties of Rao-dust-Alfv\'en waves in magnetized plasmas
The linear and nonlinear properties of the Rao-dust-magnetohydrodynamic
(R-D-MHD) waves in a dusty magnetoplasma are studied. By employing the
inertialess electron equation of motion, inertial ion equation of motion,
Amp\`ere's law, Faraday's law, and the continuity equation in a plasma with
immobile charged dust grains, the linear and nonlinear propagation of
two-dimensional R-D-MHD waves are investigated. In the linear regime, the
existence of immobile dust grains produces the Rao cutoff frequency, which is
proportional to the dust charge density and the ion gyrofrequency. On the other
hand, the dynamics of an amplitude modulated R-D-MHD waves is governed by the
cubic nonlinear Schroedinger equation. The latter has been derived by using the
reductive perturbation technique and the two-timescale analysis which accounts
for the harmonic generation nonlinearity in plasmas. The stability of the
modulated wave envelope against non-resonant perturbations is studied. Finally,
the possibility of localized envelope excitations is discussed.Comment: 30 pages, 8 figures, to appear in Physics of Plasma
Exact Expressions for Minor Hysteresis Loops in the Random Field Ising Model on a Bethe Lattice at Zero Temperature
We obtain exact expressions for the minor hysteresis loops in the
ferromagnetic random field Ising model on a Bethe lattice at zero temperature
in the case when the driving field is cycled infinitely slowly.Comment: Replaced with the published versio
Nonlinear wave-wave interactions in quantum plasmas
Wave-wave interaction in plasmas is a topic of important research since the
16th century. The formation of Langmuir solitons through the coupling of
high-frequency (hf) Langmuir and low-frequency (lf) ion-acoustic waves, is one
of the most interesting features in the context of turbulence in modern plasma
physics. Moreover, quantum plasmas, which are ubiquitous in ultrasmall
electronic devices, micromechanical systems as well as in dense astrophysical
environments are a topic of current research. In the light of notable interests
in such quantum plasmas, we present here a theoretical investigation on the
nonlinear interaction of quantum Langmuir waves (QLWs) and quantum ion-acoustic
waves (QIAWs), which are governed by the one-dimensional quantum Zakharov
equations (QZEs). It is shown that a transition to spatiotemporal chaos (STC)
occurs when the length scale of excitation of linear modes is larger than that
of the most unstable ones. Such length scale is, however, to be larger
(compared to the classical one) in presence of the quantum tunneling effect.
The latter induces strong QIAW emission leading to the occurrence of collision
and fusion among the patterns at an earlier time than the classical case.
Moreover, numerical simulation of the QZEs reveals that many solitary patterns
can be excited and saturated through the modulational instability (MI) of
unstable harmonic modes. In a longer time, these solitons are seen to appear in
the state of STC due to strong QIAW emission as well as by the collision and
fusion in stochastic motion. The energy in the system is thus strongly
redistributed, which may switch on the onset of Langmuir turbulence in quantum
plasmas.Comment: 6 pages, 6 figures (To appear in AIP Conf. Proceedings 2010
Nonlinear modulation of transverse dust lattice waves in complex plasma crystals
The occurrence of the modulational instability (MI) in transverse dust
lattice waves propagating in a one-dimensional dusty plasma crystal is
investigated. The amplitude modulation mechanism, which is related to the
intrinsic nonlinearity of the sheath electric field, is shown to destabilize
the carrier wave under certain conditions, possibly leading to the formation of
localized envelope excitations. Explicit expressions for the instability growth
rate and threshold are presented and discussed.Comment: 5 pages, no figures; submitted to Physics of Plasma
Modulational instability in asymmetric coupled wave functions
The evolution of the amplitude of two nonlinearly interacting waves is
considered, via a set of coupled nonlinear Schroedinger-type equations. The
dynamical profile is determined by the wave dispersion laws (i.e. the group
velocities and the GVD terms) and the nonlinearity and coupling coefficients,
on which no assumption is made. A generalized dispersion relation is obtained,
relating the frequency and wave-number of a small perturbation around a coupled
monochromatic (Stokes') wave solution. Explicitly stability criteria are
obtained. The analysis reveals a number of possibilities. Two (individually)
stable systems may be destabilized due to coupling. Unstable systems may, when
coupled, present an enhanced instability growth rate, for an extended wave
number range of values. Distinct unstable wavenumber windows may arise
simultaneously.Comment: NEXT Sigma-Phi Statistical Physics Conference (2005, Kolymbari,
Greece) Proceedings, submitted; v.2 is a shorter version of the text in v.1
(more detailed and somehow more explanatory, yet abbreviated due to
submission regulations); some typos corrected as wel
- …
