33 research outputs found

    Neural Machine Translation with Word Predictions

    Full text link
    In the encoder-decoder architecture for neural machine translation (NMT), the hidden states of the recurrent structures in the encoder and decoder carry the crucial information about the sentence.These vectors are generated by parameters which are updated by back-propagation of translation errors through time. We argue that propagating errors through the end-to-end recurrent structures are not a direct way of control the hidden vectors. In this paper, we propose to use word predictions as a mechanism for direct supervision. More specifically, we require these vectors to be able to predict the vocabulary in target sentence. Our simple mechanism ensures better representations in the encoder and decoder without using any extra data or annotation. It is also helpful in reducing the target side vocabulary and improving the decoding efficiency. Experiments on Chinese-English and German-English machine translation tasks show BLEU improvements by 4.53 and 1.3, respectivelyComment: Accepted at EMNLP201

    CI-GNN: A Granger Causality-Inspired Graph Neural Network for Interpretable Brain Network-Based Psychiatric Diagnosis

    Full text link
    There is a recent trend to leverage the power of graph neural networks (GNNs) for brain-network based psychiatric diagnosis, which,in turn, also motivates an urgent need for psychiatrists to fully understand the decision behavior of the used GNNs. However, most of the existing GNN explainers are either post-hoc in which another interpretive model needs to be created to explain a well-trained GNN, or do not consider the causal relationship between the extracted explanation and the decision, such that the explanation itself contains spurious correlations and suffers from weak faithfulness. In this work, we propose a granger causality-inspired graph neural network (CI-GNN), a built-in interpretable model that is able to identify the most influential subgraph (i.e., functional connectivity within brain regions) that is causally related to the decision (e.g., major depressive disorder patients or healthy controls), without the training of an auxillary interpretive network. CI-GNN learns disentangled subgraph-level representations {\alpha} and \b{eta} that encode, respectively, the causal and noncausal aspects of original graph under a graph variational autoencoder framework, regularized by a conditional mutual information (CMI) constraint. We theoretically justify the validity of the CMI regulation in capturing the causal relationship. We also empirically evaluate the performance of CI-GNN against three baseline GNNs and four state-of-the-art GNN explainers on synthetic data and three large-scale brain disease datasets. We observe that CI-GNN achieves the best performance in a wide range of metrics and provides more reliable and concise explanations which have clinical evidence.Comment: 45 pages, 13 figure

    What Knowledge Is Needed? Towards Explainable Memory for kNN-MT Domain Adaptation

    Full text link
    kNN-MT presents a new paradigm for domain adaptation by building an external datastore, which usually saves all target language token occurrences in the parallel corpus. As a result, the constructed datastore is usually large and possibly redundant. In this paper, we investigate the interpretability issue of this approach: what knowledge does the NMT model need? We propose the notion of local correctness (LAC) as a new angle, which describes the potential translation correctness for a single entry and for a given neighborhood. Empirical study shows that our investigation successfully finds the conditions where the NMT model could easily fail and need related knowledge. Experiments on six diverse target domains and two language-pairs show that pruning according to local correctness brings a light and more explainable memory for kNN-MT domain adaptation
    corecore