18 research outputs found

    Efficacy and Safety of Wei Bi Mei, a Chinese Herb Compound, as an Alternative to Bismuth for Eradication of Helicobacter pylori

    Get PDF
    Bismuth-containing quadruple therapy has been recommended as the first line of treatment in areas of high clarithromycin or metronidazole resistance. However, safety concerns of bismuth agents have long been raised. We first assessed the efficacy and safety of Wei Bi Mei granules, which are bismuth compounds consisting of three synthetic drugs and five medicinal herbs, compared to bismuth aluminate and colloidal bismuth subcitrate (CBS) in H. pylori-infected mouse model. We then used atomic fluorescence spectroscopy and autometallography to measure the accumulation of three bismuth agents in the brain, heart, liver, and kidneys in adult Sprague-Dawley rats. We also evaluated the safety of bismuth agents by conducting clinical biochemistry tests in blood samples of experimental animals. Wei Bi Mei granules exhibited the highest efficacy of anti-H. pylori activity and yielded the lowest bismuth accumulation when compared to CBS and bismuth aluminate. Our findings show that Wei Bi Mei granules are a safe Chinese medicinal herb with potent anti-H. pylori activity and can be considered as an alternative to current bismuth compounds. Thus, Wei Bi Mei granules merit further evaluation, particularly with regard to efficacy and safety when they are combined with other H. pylori eradication medications in the clinical setting

    Cardiomyocyte overexpression of miR-27b induces cardiac hypertrophy and dysfunction in mice

    Get PDF
    Recent studies have begun to reveal critical roles of microRNAs (miRNAs) in the pathogenesis of cardiac hypertrophy and dysfunction. In this study, we tested whether a transforming growth factor-Ī² (TGF-Ī²)-regulated miRNA played a pivotal role in the development of cardiac hypertrophy and heart failure (HF). We observed that miR-27b was upregulated in hearts of cardiomyocyte-specific Smad4 knockout mice, which developed cardiac hypertrophy. In vitro experiments showed that the miR-27b expression could be inhibited by TGF-Ī²1 and that its overexpression promoted hypertrophic cell growth, while the miR-27b suppression led to inhibition of the hypertrophic cell growth caused by phenylephrine (PE) treatment. Furthermore, the analysis of transgenic mice with cardiomyocyte-specific overexpression of miR-27b revealed that miR-27b overexpression was sufficient to induce cardiac hypertrophy and dysfunction. We validated the peroxisome proliferator-activated receptor-Ī³ (PPAR-Ī³) as a direct target of miR-27b in cardiomyocyte. Consistently, the miR-27b transgenic mice displayed significantly lower levels of PPAR-Ī³ than the control mice. Furthermore, in vivo silencing of miR-27b using a specific antagomir in a pressure-overload-induced mouse model of HF increased cardiac PPAR-Ī³ expression, attenuated cardiac hypertrophy and dysfunction. The results of our study demonstrate that TGF-Ī²1-regulated miR-27b is involved in the regulation of cardiac hypertrophy, and validate miR-27b as an efficient therapeutic target for cardiac diseases

    ECT2 Increases the stability of EGFR and Tumorigenicity by Inhibiting Grb2 Ubiquitination in Pancreatic Cancer

    Get PDF
    The poor prognosis of patients with pancreatic ductal adenocarcinoma (PDAC) is associated with the invasion and metastasis of tumor cells. Epithelial cell transforming 2 (ECT2) is a guanine nucleotide exchange factor (GEF) of the Rho family of GTPases. It has also been reported that upregulation of ECT2 in pancreatic cancer, but the role and mechanism of ECT2 have not been previously determined. We found that ECT2 was significantly elevated in PDAC tissues and cells, correlated with more advanced AJCC stage, distant metastases, and overall survival of patients with PDAC. Inhibition and overexpression tests showed that ECT2 promoted proliferation, migration and invasion in vitro, and promoted tumor growth and metastasis in vivo. We determined that ECT2 was involved in the post-translational regulation of Grb2. ECT2 inhibited the degradation of Grb2 through deubiquitination. Furthermore, knockdown of ECT2 downregulated EGFR levels by accelerating EGFR degradation. EGF stimulation facilitated the formation of ECT2-Grb2 complex. Overall, our findings indicated that ECT2 could be used as a promising new therapeutic candidate for PDAC

    miR193b Promotes Apoptosis of Gastric Cancer Cells via Directly Mediating the Akt Pathway

    No full text
    Gastric cancer (GC) is one of the most common and fatal malignancies worldwide. MicroRNAs (miRNAs) play a critical role in tumor initiation, proliferation, and metastasis of gastric cancer. miR193b has been identified as a tumor suppressor in a variety of tumor types; however, its role in gastric cancer is yet to be determined. Here, we found a significant downregulation of miR193b expression in both human gastric cancer tissues (p<0.05) and human gastric cancer cell lines (p<0.01). Furthermore, the expression level of miR193b correlated with the tumor type, tumor size, and clinical stage (p<0.05). In vitro, miR193b overexpression inhibited cell survival and induced apoptosis in GC cell lines, indicating that miR193b plays a role in the development of gastric cancer. KRAS was verified as the target of miR193b, and KRAS overexpression attenuated miR193b-induced apoptosis (p<0.05). Moreover, we found that the Akt pathway negatively regulated miR193b, also affecting apoptosis. Further analyses indicated that PIK3CA mutation and KRAS amplification are two mutually exclusive pathways (p<0.01), and we hypothesize that both two pathways could result in the carcinogenic overactivation of KRAS. Thus, our results suggest that the Akt-miR193b-KRAS axis may act as a mechanism affecting apoptosis in gastric cancer cells

    Analysis and GIS Mapping of Flooding Hazards on 10 May 2016, Guangzhou, China

    No full text
    On 10 May 2016, Guangdong Province, China, suffered a heavy rainstorm. This rainstorm flooded the whole city of Guangzhou. More than 100,000 people were affected by the flooding, in which eight people lost their lives. Subway stations, cars, and buses were submerged. In order to analyse the influential factors of this flooding, topographical characteristics were mapped using Digital Elevation Model (DEM) by the Geographical Information System (GIS) and meteorological conditions were statistically summarised at both the whole city level and the district level. To analyse the relationship between flood risk and urbanization, GIS was also adopted to map the effect of the subway system using the Multiple Buffer operator over the flooding distribution area. Based on the analyses, one of the significant influential factors of flooding was identified as the urbanization degree, e.g., construction of a subway system, which forms along flood-prone areas. The total economic loss due to flooding in city centers with high urbanization has become very serious. Based on the analyses, the traditional standard of severity of flooding hazards (rainfall intensity grade) was modified. Rainfall intensity for severity flooding was decreased from 50 mm to 30 mm in urbanized city centers. In order to protect cities from flooding, a ā€œSponge Cityā€ planning approach is recommended to increase the temporary water storage capacity during heavy rainstorms. In addition, for future city management, the combined use of GIS and Building Information Modelling (BIM) is recommended to evaluate flooding hazards

    FAM175B promotes apoptosis by inhibiting ATF4 ubiquitination in esophageal squamous cell carcinoma

    No full text
    FAM175B is a reported regulator of p53 and suppresses tumorigenesis in numerous types of cancer, but very little is known about its function in esophageal squamous cell carcinomas (ESCCs), almost 70% of which exhibit mutations in p53. Here, we report that FAM175B expression is downregulated in highā€grade intraepithelial neoplasia (tĀ =Ā 2.44, PĀ =Ā 0.031) and ESCC (tĀ =Ā 5.664, PĀ <Ā 0.001) tissues relative to that in adjacent normal esophageal tissues. Exogenous expression of FAM175B in ESCC cells resulted in a decrease in proliferation rate, inhibition of colony formation, and an increase in apoptosis rate. Knockdown of FAM175B produced the opposite results. Furthermore, confocal microscopy and coimmunoprecipitation assay showed that Activating transcription factor 4 (ATF4) colocalized and interacted with FAM175B. Ubiquitination assays revealed that FAM175B inhibited ubiquitinā€dependent ATF4 degradation and elevated ATF4 protein level. Finally, luciferase reporter experiments further clarified that FAM175B promoted CHOP expression in an ATF4ā€dependent manner. Accordingly, the proapoptotic activity of FAM175B was significantly rescued by treatment with siā€ATF4 and the CHOP inhibitor 4ā€PBA. In summary, FAM175B inhibited ATF4 ubiquitination and promoted ESCC cell apoptosis in a p53ā€independent manner. FAM175B expression loss may be an early diagnostic biomarker in ESCC patients

    Proteomic and Phenotypic Studies of Mycoplasma pneumoniae Revealed Macrolide-Resistant Mutation (A2063G) Associated Changes in Protein Composition and Pathogenicity of Type I Strains

    No full text
    ABSTRACT Mycoplasma pneumoniae (MP) is an important respiratory pathogen, the prevalence of macrolide-resistant MP (mainly containing A2063G mutation in 23S rRNA) increased in recent years. Epidemiological studies suggest a higher prevalence of type I resistant (IR) strains than corresponding sensitive (IS/IIS) strains, but not type II resistant (IIR) strains. Here, we aimed to analyze the factors underlying the altered prevalence of IR strains. First, proteomic analyses exhibit the protein compositions were type specific, while more differential proteins were detected between IS and IR (227) than IIS and IIR strains (81). mRNA level detection suggested posttranscriptional regulation of these differential proteins. Differential protein-related phenotypic changes were also detected: (i) P1 abundance was different between genotypes (I 0.05). Correlations of P1 abundance to caspase-3 activity and proliferation rate to the level of IL-8 were obtained. These results suggest changes in protein composition influenced the pathogenicity of MP, especially in IR strains, which may impact the prevalence of MP strains of different genotypes. IMPORTANCE The prevalence of macrolide-resistant MPs increased the difficulty in treatment of MP infections and posed potential threats to children's health. Epidemiological studies showed a high prevalence of IR-resistant strains (mainly A2063G in 23S rRNA) in these years. However, the trigger mechanisms for this phenomenon are not clear. In this paper, proteomic and phenotypic studies suggest that IR strains have reduced levels of multiple adhesion proteins and increased proliferation rate, which may lead to higher transmission rate of IR strains in the population. This suggests that we should pay attention to the prevalence of IR strains

    Evaluation of Environmental Risk Due to Metro System Construction in Jinan, China

    No full text
    Jinan is a famous spring city in China. Construction of underground metro system may block groundwater seepage, inducing the depletion risk of springs. This paper presents an assessment of the risk due to metro line construction to groundwater in Jinan City using Analytic Hierarchy Process (AHP) and Geographic International System (GIS). Based on the characteristics of hydrogeology and engineering geology, the assessment model is established from the perspectives of surface index and underground index. The assessment results show that the high and very high risk levels of surface index exceed 98% in the north region; and high and very high risk levels of underground index exceed 56% in urban center and southern region. The assessment result also shows that about 14% of the urban area belongs to very high risk level; regions of high risk are 20% in urban area, 9% in Changqing County and 43% in Pingyin County. In the high risk region, metro lines R1 to R3, which are under construction, and metro lines L1 to L5, which are planned, have very high and high risk. Therefore, risk control measures are proposed to protect the groundwater seepage path to spring

    Integrated Analysis Identifies Molecular Signatures and Specific Prognostic Factors for Different Gastric Cancer Subtypes

    No full text
    BACKGROUND: Gastric cancer (GC) is the fifth leading cause of cancer-related deaths worldwide. As an effective and easily performed method, microscopy-based Lauren classification has been widely accepted by gastrointestinal surgeons and pathologists for GC subtyping, but molecular characteristics of different Lauren subtypes were poorly revealed. METHODS: GSE62254 was used as a derivation cohort, and GSE15459 was used as a validation cohort. The difference between diffuse and intestinal GC on the gene expression level was measured. Gene ontology (GO) enrichment analysis was performed for both subgroups. Hierarchical clustering and heatmap exhibition were also performed. Kaplan-Meier plot and Cox proportional hazards model were used to evaluate survival grouped by the given genes or hierarchical clusters. RESULTS: A total of 4598 genes were found differentially expressed between diffuse and intestinal GC. Immunity- and cell adhesionā€“related GOs were enriched for diffuse GC, whereas DNA repairā€“ and cell cycleā€“related GOs were enriched for intestinal GC. We proposed a 40-gene signature (Ļ‡2Ā =Ā 30.71, PĀ <Ā .001) that exhibits better discrimination for prognosis than Lauren classification (Ļ‡2Ā =Ā 12.11, PĀ =Ā .002). FRZB [RR (95% CI)Ā =Ā 1.824 (1.115-2.986), PĀ =Ā .017] and EFEMP1 [RR (95% CI)Ā =Ā 1.537 (0.969-2.437), PĀ =Ā .067] were identified as independent prognostic factors only in diffuse GC but not in intestinal GC patients. KRT23 [RR (95% CI)Ā =Ā 1.616 (0.938-2.785), PĀ =Ā .083] was identified as an independent prognostic factor only in intestinal GC patients but not in diffuse GC patients. Similar results were achieved in the validation cohort. CONCLUSION: We found that GCs with different Lauren classifications had different molecular characteristics and identified FRZB, EFEMP1, and KRT23 as subtype-specific prognostic factors for GC patients
    corecore