102 research outputs found

    Inferring Protein-Protein Interactions (PPIs) Based on Computational Methods

    Get PDF

    Prediction of protein motions from amino acid sequence and its application to protein-protein interaction

    Get PDF
    BACKGROUND: Structural flexibility is an important characteristic of proteins because it is often associated with their function. The movement of a polypeptide segment in a protein can be broken down into two types of motions: internal and external ones. The former is deformation of the segment itself, but the latter involves only rotational and translational motions as a rigid body. Normal Model Analysis (NMA) can derive these two motions, but its application remains limited because it necessitates the gathering of complete structural information. RESULTS: In this work, we present a novel method for predicting two kinds of protein motions in ordered structures. The prediction uses only information from the amino acid sequence. We prepared a dataset of the internal and external motions of segments in many proteins by application of NMA. Subsequently, we analyzed the relation between thermal motion assessed from X-ray crystallographic B-factor and internal/external motions calculated by NMA. Results show that attributes of amino acids related to the internal motion have different features from those related to the B-factors, although those related to the external motion are correlated strongly with the B-factors. Next, we developed a method to predict internal and external motions from amino acid sequences based on the Random Forest algorithm. The proposed method uses information associated with adjacent amino acid residues and secondary structures predicted from the amino acid sequence. The proposed method exhibited moderate correlation between predicted internal and external motions with those calculated by NMA. It has the highest prediction accuracy compared to a naïve model and three published predictors. CONCLUSIONS: Finally, we applied the proposed method predicting the internal motion to a set of 20 proteins that undergo large conformational change upon protein-protein interaction. Results show significant overlaps between the predicted high internal motion regions and the observed conformational change regions

    Multidrug resistance in hematological malignancy

    Get PDF
    The recent treatment of hematological malignancies appears to be unsatisfactory in child and adult patients with acute myeloid leukemia and adult patients with acute lymphocytic leukemia. A major problem in the treatment of leukemia is caused by the development of drug resistance to chemotherapeutic agents, which is already present at diagnosis or after chemotherapy as a minimal residual disease, their resistance having originated from genetic or epigenetic mutations during prior growth of the leukemia clone. It was suggested that the mechanisms of drug resistance consist of drug resistance proteins, which work as a drug efflux pump. These are the permeability- related glycoprotein (P- Gp), the multidrug-resistance associated protein(MRP), the lung resistance protein(LRP), and other MDR proteins such as the transporter associated with antigen processing (TAP), anthracyclin resistance associated protein (ARA), MRP 2-7, and breast cancer resistance protein (BCRP). In addition, anti-apoptosis mechanisms, alterations of tumor suppressor genes, altered immunogenicity, drug resistance mechanisms for individual drugs, and clinical risk factors such as white blood cell count, age, and other factors have been reported to act in drug resistance singly or in combinations. Here we describe the update of research on the biology of MDR in the hematological malignancies and also discuss how to overcome MDR and adapt the updated treatment methods in the clinical medical field

    Predicting mostly disordered proteins by using structure-unknown protein data

    Get PDF
    BACKGROUND: Predicting intrinsically disordered proteins is important in structural biology because they are thought to carry out various cellular functions even though they have no stable three-dimensional structure. We know the structures of far more ordered proteins than disordered proteins. The structural distribution of proteins in nature can therefore be inferred to differ from that of proteins whose structures have been determined experimentally. We know many more protein sequences than we do protein structures, and many of the known sequences can be expected to be those of disordered proteins. Thus it would be efficient to use the information of structure-unknown proteins in order to avoid training data sparseness. We propose a novel method for predicting which proteins are mostly disordered by using spectral graph transducer and training with a huge amount of structure-unknown sequences as well as structure-known sequences. RESULTS: When the proposed method was evaluated on data that included 82 disordered proteins and 526 ordered proteins, its sensitivity was 0.723 and its specificity was 0.977. It resulted in a Matthews correlation coefficient 0.202 points higher than that obtained using FoldIndex, 0.221 points higher than that obtained using the method based on plotting hydrophobicity against the number of contacts and 0.07 points higher than that obtained using support vector machines (SVMs). To examine robustness against training data sparseness, we investigated the correlation between two results obtained when the method was trained on different datasets and tested on the same dataset. The correlation coefficient for the proposed method is 0.14 higher than that for the method using SVMs. When the proposed SGT-based method was compared with four per-residue predictors (VL3, GlobPlot, DISOPRED2 and IUPred (long)), its sensitivity was 0.834 for disordered proteins, which is 0.052–0.523 higher than that of the per-residue predictors, and its specificity was 0.991 for ordered proteins, which is 0.036–0.153 higher than that of the per-residue predictors. The proposed method was also evaluated on data that included 417 partially disordered proteins. It predicted the frequency of disordered proteins to be 1.95% for the proteins with 5%–10% disordered sequences, 1.46% for the proteins with 10%–20% disordered sequences and 16.57% for proteins with 20%–40% disordered sequences. CONCLUSION: The proposed method, which utilizes the information of structure-unknown data, predicts disordered proteins more accurately than other methods and is less affected by training data sparseness
    corecore