36 research outputs found
Reconstitution of Kidney Side Population Cells after Ischemia-Reperfusion Injury by Self-Proliferation and Bone Marrow-Derived Cell Homing
The aim of this study was to examine the contribution of side population (SP) cells from kidney and bone marrow for reconstitution of kidney SP pools after ischemia-reperfusion injury (IRI). The SP and non-SP cells in kidneys following IRI were isolated and serially assessed by fluorescence-activated cell sorting. The apoptosis, proliferation, phenotype, and paracrine actions of SP cells were evaluated in vitro and in vivo. Results indicated that the SP cells from ischemic kidney were acutely depleted within one day following renal IRI and were progressively restored to baseline within 7 days after IRI, through both proliferation of remaining kidney SP cells and homing of bone marrow-derived cells to ischemic kidney. Either hypoxia or serum deprivation alone increased apoptosis of SP cells, and a combination of both further aggravated it. Furthermore, hypoxia in vivo and in vitro induced the increase in the secretion of vascular endothelial growth factor, insulin-like growth factor 1, hepatocyte growth factor, and stromal cell-derived factor-1α in kidney SP but not non-SP cells. In summary, these results suggest that following renal IRI, kidney SP cells are acutely depleted and then progressively restored to baseline levels by both self-proliferation and extrarenal source, that is, bone marrow-derived cell homing
Regulation of serotonin production by specific microbes from piglet gut
Abstract
Background
Serotonin is an important signaling molecule that regulates secretory and sensory functions in the gut. Gut microbiota has been demonstrated to affect serotonin synthesis in rodent models. However, how gut microbes regulate intestinal serotonin production in piglets remains vague. To investigate the relationship between microbiota and serotonin specifically in the colon, microbial composition and serotonin concentration were analyzed in ileum-cannulated piglets subjected to antibiotic infusion from the ileum when comparing with saline infusion. Microbes that correlated positively with serotonin production were isolated from piglet colon and were further used to investigate the regulation mechanisms on serotonin production in IPEC-J2 and a putative enterochromaffin cell line RIN-14B cells.
Results
Antibiotic infusion increased quantities of Lactobacillus amylovorus (LA) that positively correlated with increased serotonin concentrations in the colon, while no effects observed for Limosilactobacillus reuteri (LR). To understand how microbes regulate serotonin, representative strains of LA, LR, and Streptococcus alactolyticus (SA, enriched in feces from prior observation) were selected for cell culture studies. Compared to the control group, LA, LR and SA supernatants significantly up-regulated tryptophan hydroxylase 1 (TPH1) expression and promoted serotonin production in IPEC-J2 cells, while in RIN-14B cells only LA exerted similar action. To investigate potential mechanisms mediated by microbe-derived molecules, microbial metabolites including lactate, acetate, glutamine, and γ-aminobutyric acid were selected for cell treatment based on computational and metabolite profiling in bacterial supernatant. Among these metabolites, acetate upregulated the expression of free fatty acid receptor 3 and TPH1 while downregulated indoleamine 2,3-dioxygenase 1. Similar effects were also recapitulated when treating the cells with AR420626, an agonist targeting free fatty acid receptor 3.
Conclusions
Overall, these results suggest that Lactobacillus amylovorus showed a positive correlation with serotonin production in the pig gut and exhibited a remarkable ability to regulate serotonin production in cell cultures. These findings provide evidence that microbial metabolites mediate the dialogue between microbes and host, which reveals a potential approach using microbial manipulation to regulate intestinal serotonin biosynthesis
Screening and performance optimization of fungi for heavy metal adsorption in electrolytes
The resource recovery and reuse of precious metal-laden wastewater is widely recognized as crucial for sustainable development. Superalloy electrolytes, produced through the electrolysis of superalloy scrap, contain significant quantities of precious metal ions, thereby possessing substantial potential for recovery value. This study first explores the feasibility of utilizing fungi to treat Superalloy electrolytes. Five fungi resistant to high concentrations of heavy metals in electrolytes (mainly containing Co, Cr, Mo, Re, and Ni) were screened from the soil of a mining area to evaluate their adsorption characteristics. All five fungi were identified by ITS sequencing, and among them, Paecilomyces lilacinus showed the best adsorption performance for the five heavy metals; therefore, we conducted further research on its adsorption characteristics. The best adsorption effect of Co, Cr, Mo, Re, and Ni was 37.09, 64.41, 47.87, 41.59, and 25.38%, respectively, under the conditions of pH 5, time 1 h, dosage 26.67 g/L, temperature 25–30°C, and an initial metal concentration that was diluted fivefold in the electrolyte. The biosorption of Co, Mo, Re, and Ni was better matched by the Langmuir model than by the Freundlich model, while Cr displayed the opposite pattern, showing that the adsorption process of P. lilacinus for the five heavy metals is not a single adsorption mechanism, but may involve a multi-step adsorption process. The kinetics study showed that the quasi-second-order model fitted better than the quasi-first-order model, indicating that chemical adsorption was the main adsorption process of the five heavy metals in P. lilacinus. Fourier transform infrared spectroscopy revealed that the relevant active groups, i.e., hydroxyl (-OH), amino (-NH2), amide (- CONH2), carbonyl (-C = O), carboxyl (-COOH), and phosphate (PO43–), participated in the adsorption process. This study emphasized the potential application of P. lilacinus in the treatment of industrial wastewater with extremely complex background values
The Role of SDF-1-CXCR4/CXCR7 Axis in the Therapeutic Effects of Hypoxia-Preconditioned Mesenchymal Stem Cells for Renal Ischemia/Reperfusion Injury
In vitro hypoxic preconditioning (HP) of mesenchymal stem cells (MSCs) could ameliorate their viability and tissue repair capabilities after transplantation into the injured tissue through yet undefined mechanisms. There is also experimental evidence that HP enhances the expression of both stromal-derived factor-1 (SDF-1) receptors, CXCR4 and CXCR7, which are involved in migration and survival of MSCs in vitro, but little is known about their role in the in vivo therapeutic effectiveness of MSCs in renal ischemia/reperfusion (I/R) injury. Here, we evaluated the role of SDF-1-CXCR4/CXCR7 pathway in regulating chemotaxis, viability and paracrine actions of HP-MSCs in vitro and in vivo. Compared with normoxic preconditioning (NP), HP not only improved MSC chemotaxis and viability but also stimulated secretion of proangiogenic and mitogenic factors. Importantly, both CXCR4 and CXCR7 were required for the production of paracrine factors by HP-MSCs though the former was only responsible for chemotaxis while the latter was for viability. SDF-1α expression was upregulated in postischemic kidneys. After 24 h systemical administration following I/R, HP-MSCs but not NP-MSCs were selectively recruited to ischemic kidneys and this improved recruitment was abolished by neutralization of CXCR4, but not CXCR7. Furthermore, the increased recruitment of HP-MSCs was associated with enhanced functional recovery, accelerated mitogenic response, and reduced apoptotic cell death. In addition, neutralization of either CXCR4 or CXCR7 impaired the improved therapeutic potential of HP-MSCs. These results advance our knowledge about SDF-1-CXCR4/CXCR7 axis as an attractive target pathway for improving the beneficial effects of MSC-based therapies for renal I/R
Molecular Mechanisms of circRNA–miRNA–mRNA Interactions in the Regulation of Goose Liver Development
The liver, a crucial metabolic organ in animals, is responsible for the synthesis, breakdown, and transport of lipids. However, the regulatory mechanisms involving both coding and noncoding RNAs that oversee the development of the goose liver remain elusive. This study aimed to fill this knowledge gap by conducting RNA-seq to profile the expression of circular RNAs (circRNAs) and microRNAs (miRNAs) during goose liver development. We analyzed circRNAs in liver samples from Sichuan white geese at three developmental stages: posthatching day 0, 10 weeks (fast growth stage), and 30 weeks (sexual maturation stage). Our findings revealed 11,079 circRNAs and 994 miRNAs, among which the differentially expressed circRNAs and miRNAs were significantly enriched in pathways such as fatty acid biosynthesis, degradation, and metabolism. Further analysis of the target genes of the differentially expressed miRNAs revealed enrichment in pathways related to fatty acid biosynthesis, metabolism, PPAR signaling, DNA replication, and the cell cycle. We also established circRNA–miRNA–mRNA regulatory networks, identifying key regulatory factors and miRNAs. In conclusion, our study offers valuable insights into the complex interplay of circRNA–miRNA–mRNA interactions during goose liver development, and illuminates the molecular pathways that regulate this vital life function
TG-FTIR and Py-GC/MS study of the pyrolysis mechanism and composition of volatiles from flash pyrolysis of PVC
To facilitate the reuse and recycling of polyvinyl chloride (PVC) to achieve sustainable development and new industrialization, the composition and mechanism of formation of volatiles during the flash py-rolysis of PVC were studied by thermogravimetry-Fourier transform infrared (TG-FTIR) and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). TG and derivative thermogravimetry (DTG) analyses indicated two main degradation stages during flash pyrolysis of PVC, namely dehydrochlorination of PVC and decomposition of dechlorinated-PVC. Simultaneously, the FTIR results revealed that the main functional groups in the pyrolysis process were H-Cl,-C-Cl, C-H, C=H, and aromatic groups. The relative content of main volatiles was determined by Py-GC/MS, and decreased in the following order: aromatics > alkenes > hydrogen chloride (HCl) > chlorinated hydrocarbons. Specifically, the relative content of aromatics was as high as 76.790-81.809%, while that of HCl was in the range of 3.016-3.096%. The carbon number distribution and the relative content of main products obtained from the flash py-rolysis of PVC at different final temperatures were also analysed. According to the experimental results, the mechanism of formation of the main volatiles based on free-radical reactions was deduced in detail. Therefore, this study provides further details for deepening the understanding of the PVC pyrolysis process. (C) 2020 Energy Institute. Published by Elsevier Ltd. All rights reserved
Transcriptome RNA Sequencing Reveals That Circular RNAs Are Abundantly Expressed in Embryonic Breast Muscle of Duck
Circular RNAs are widespread in various species and have important roles in myogenesis. However, the circular RNAs involved in breast muscle development in ducks have not yet been studied. Here, to identify circular RNAs during duck skeletal muscle development, three pectorales from Shan Ma ducks at E13 and E19, which represent undifferentiated and differentiated myoblasts, respectively, were collected and subjected to RNA sequencing. A total of 16,622 circular RNAs were identified, of which approximately 80% were exonic circular RNAs and 260 were markedly differentially expressed between E19 and E13. The parental genes of the differentially expressed circular RNAs were significantly enriched in muscle-related biological processes. Moreover, we found that the overexpression of circGAS2-2 promoted cell cycle progression and increased the proliferation viability of duck primary myoblasts; conversely, knockdown of circGAS2-2 retarded the cell cycle and reduced the proliferation viability of myoblasts. Taken together, our results demonstrate that circular RNAs are widespread and variously expressed during the development of duck skeletal muscle and that circGAS2-2 is involved in the regulation of myogenesis
Preparation and Characterization of Nanoliposomes Entrapping Medium-Chain Fatty Acids and Vitamin C by Lyophilization
The complex nanoliposomes encapsulating both a hydrophilic drug vitamin C (vit C) and hydrophobic drug medium-chain fatty acids (MCFAs) was prepared by combining double emulsion method with dynamic high pressure microfluidization. The complex nanoliposomes was further freeze-dried under −86 °C for 48 h with sucrose at the sucrose/lipids ratio of 2:1(w/w) in order to enhance its stability. The freeze-dried complex nanoliposomes under the suitable conditions exhibited high entrapment efficiency of MCFAs (44.26 ± 3.34)%, relatively high entrapment efficiency of vit C (62.25 ± 3.43)%, low average size diameter (110.4 ± 7.28) nm and good storage stability at 4 °C for 60 days with slight changes in mean particle diameter and drug entrapment efficiencies. The results of transmission electron microscopy of freeze-dried complex nanoliposomes also showed that the freeze-dried samples with sucrose were stable without great increase in their particle sizes and without destroying their spherical shape. The results indicated that sucrose presented well protection effects in MCFAs-vit C complex nanoliposomes, suggesting the possibility of further usage in commercial liposomes
Profiling Analysis of N6-Methyladenosine mRNA Methylation Reveals Differential m6A Patterns during the Embryonic Skeletal Muscle Development of Ducks
N6-Methyladenosine is a reversible epigenetic modification that influences muscle development. However, the m6A modification profile during poultry skeletal muscle development is poorly understood. Here, we utilized m6A-specific methylated RNA immunoprecipitation sequencing to identify m6A sites during two stages of breast muscle development in ducks: embryonic days 13 (E13) and E19. MeRIP-seq detected 19,024 and 18,081 m6A peaks in the E13 and E19 groups, respectively. Similarly to m6A distribution in mammalian transcripts, our results revealed GGACU as the main m6A motif in duck breast muscle; they also revealed that m6A peaks are mainly enriched near the stop codons. In addition, motif sequence analysis and gene expression analysis demonstrated that m6A modification in duck embryo skeletal muscles may be mediated by the methyltransferase-like 14. GO and KEGG analysis showed that m6A peaks containing genes at E19 were mainly enriched in muscle-differentiation- and muscle-growth-related pathways, whereas m6A peaks containing genes in E13 were mainly enriched in embryonic development and cell proliferation pathways. Combined analysis of MeRIP-seq and RNA-seq showed that the mRNA expression may be affected by m6A modification. Moreover, qRT-PCR analysis of the expression of METTL14 and its cofactors (WTAP, ZC3H13, RBM15 and VIRMA) during duck embryonic skeletal muscle development in breast and leg muscle samples revealed a significant downward trend as the developmental age progressed. Our results demonstrated that m6A mRNA methylation modifications control muscle development in ducks. This is the first study of m6A modification patterns in duck muscle tissue development, and it lays the foundation for the study of the effects of RNA modification on poultry skeletal muscle development
The SWGEDWGEIW from Soybean Peptides Reduces Insulin Resistance in 3T3-L1 Adipocytes by Activating p-Akt/GLUT4 Signaling Pathway
Diabetes mellitus, a group of metabolic disorders characterized by persistent hyperglycemia, affects millions of people worldwide and is on the rise. Dietary proteins, from a wide range of food sources, are rich in bioactive peptides with anti-diabetic properties. Notably, the protective mechanism of the single peptide SWGEDWGEIW (TSP) from soybean peptides (SBPs) on insulin resistance of adipocytes in an inflammatory state was investigated by detecting the lipolysis and glucose absorption and utilization of adipocytes. The results showed that different concentrations of TSP (5, 10, 20 µg/mL) intervention can reduce 3T3-L1 adipocytes’ insulin resistance induced by inflammatory factors in a dose-dependent manner and increase glucose utilization by 34.2 ± 4.6%, 74.5 ± 5.2%, and 86.7 ± 6.1%, respectively. Thus, TSP can significantly alleviate the lipolysis of adipocytes caused by inflammatory factors. Further mechanism analysis found that inflammatory factors significantly reduced the phosphorylation (p-Akt) of Akt, two critical proteins of glucose metabolism in adipocytes, and the expression of GLUT4 protein downstream, resulting in impaired glucose utilization, while TSP intervention significantly increased the expression of these two proteins. After pretreatment of adipocytes with PI3K inhibitor (LY294002), TSP failed to reduce the inhibition of p-Akt and GLUT4 expression in adipocytes. Meanwhile, the corresponding significant decrease in glucose absorption and the increase in the fat decomposition of adipocytes indicated that TSP reduced 3T3-L1 adipocytes’ insulin resistance by specifically activating the p-Akt/GLUT4 signal pathway. Therefore, TSP has the potential to prevent obesity-induced adipose inflammation and insulin resistance