38 research outputs found

    Flexion contracture can cause component mismatch in the Prophecy® preoperative patient-specific instrumentation for Evolution® medial-pivot knee system

    Get PDF
    Introduction: Patient-specific instrumentation (PSI) systems are used to conduct total knee arthroplasty. PSI reduces operative time, is less invasive and easier to use, and minimizes the risk of errors by providing precise measurements and reducing operating room turnover time. However, a study on the accuracy of Prophecy Evolution PSI (Microport Inc., Arlington, TN, USA) reported that 94% were below the error margin of 1.5 mm and 90% had error margins of 1 mm. This study aimed to evaluate the accuracy of the Prophecy Evolution PSI system in terms of the thickness of “total” bony resection required to achieve adequate extension/flexion gaps and the component match ratio between preoperative planning and actual component size inserted. Methods: Comparisons were made between the sizes of femoral and tibial components planned with PSI and those inserted. The primary outcome was the average preoperative range of motion with and without matched femoral/tibial components. The study further analyzed the proportions of cases in which both the femoral and tibial components matched, neither matched, and only one of the femoral or tibial components matched. Results: The ratio of the same sizes between the PSI planning and those inserted was 50.8% (33 patients) for both the femoral and tibial components. For the femoral component alone, the ratio was 84.6% (55 patients), and for the tibial component, it was 58.4% (38 patients). A receiver-operating characteristic curve analysis indicated that flexion contracture greater than 20° was a significant prognostic factor for the PSI component match group versus the mismatch group. Discussion: Flexion contracture may cause PSI mismatch. Notably, flexion contracture greater than 20° was a significant risk factor for the PSI component match group versus the mismatch group. During preoperative planning for a patient with flexion contracture, surgeons should prepare for the possibility of inserting an undersized tibial component

    Flexion contracture can cause component mismatch in the Prophecy

    No full text
    Introduction: Patient-specific instrumentation (PSI) systems are used to conduct total knee arthroplasty. PSI reduces operative time, is less invasive and easier to use, and minimizes the risk of errors by providing precise measurements and reducing operating room turnover time. However, a study on the accuracy of Prophecy Evolution PSI (Microport Inc., Arlington, TN, USA) reported that 94% were below the error margin of 1.5 mm and 90% had error margins of 1 mm. This study aimed to evaluate the accuracy of the Prophecy Evolution PSI system in terms of the thickness of “total” bony resection required to achieve adequate extension/flexion gaps and the component match ratio between preoperative planning and actual component size inserted. Methods: Comparisons were made between the sizes of femoral and tibial components planned with PSI and those inserted. The primary outcome was the average preoperative range of motion with and without matched femoral/tibial components. The study further analyzed the proportions of cases in which both the femoral and tibial components matched, neither matched, and only one of the femoral or tibial components matched. Results: The ratio of the same sizes between the PSI planning and those inserted was 50.8% (33 patients) for both the femoral and tibial components. For the femoral component alone, the ratio was 84.6% (55 patients), and for the tibial component, it was 58.4% (38 patients). A receiver-operating characteristic curve analysis indicated that flexion contracture greater than 20° was a significant prognostic factor for the PSI component match group versus the mismatch group. Discussion: Flexion contracture may cause PSI mismatch. Notably, flexion contracture greater than 20° was a significant risk factor for the PSI component match group versus the mismatch group. During preoperative planning for a patient with flexion contracture, surgeons should prepare for the possibility of inserting an undersized tibial component

    Development of a CRISPR/Cas9-mediated gene-editing method to isolate a mutant of the unicellular green alga Parachlorella kessleri strain NIES-2152 with improved lipid productivity

    No full text
    Abstract Background Previously, we isolated a mutant of Parachlorella kessleri named strain PK4 that accumulated higher concentrations of lipids than the wild-type strain. Resequencing of the PK4 genome identified mutations in three genes which may be associated with the high-lipid phenotype. The first gene, named CDMT1, encodes a protein with a calcium-dependent membrane association domain; the second gene, named DMAN1, encodes endo-1,4-β-mannanase, while the third gene, named AATPL1, encodes a plastidic ATP/ADP antiporter-like protein. Results To determine which of these mutant genes are directly responsible for the phenotype of strain PK4, we delivered Cas9-gRNA ribonucleoproteins targeting each of the three genes into the wild-type cells by electroporation and successfully disrupted these three genes separately. The lipid productivity in the disruptants of CDMT1 and DMAN1 was similar to and lower than that in the wild-type strain, while the disruptants of AATPL1 exhibited > 30% higher lipid productivity than the wild-type strain under diurnal conditions. Conclusions We succeeded in improving the lipid productivity of P. kessleri by CRISPR/Cas9-mediated gene disruption of AATPL1. The effective gene-editing method established in this study will be useful to improve Parachlorella strains for industrial applications

    Crystallization and preliminary X-ray analysis of the C-terminal RNase III domain of human Dicer

    No full text
    The C-terminal RNase III domain (RNase IIIb) of human Dicer has been expressed, purified and crystallized by the sitting-drop vapour-diffusion method

    Supra-Optimal Temperature: An Efficient Approach for Overaccumulation of Starch in the Green Alga Parachlorella kessleri

    No full text
    Green algae are fast-growing microorganisms that are considered promising for the production of starch and neutral lipids, and the chlorococcal green alga Parachlorella kessleri is a favorable model, as it can produce both starch and neutral lipids. P. kessleri commonly divides into more than two daughter cells by a specific mechanism—multiple fission. Here, we used synchronized cultures of the alga to study the effects of supra-optimal temperature. Synchronized cultures were grown at optimal (30 °C) and supra-optimal (40 °C) temperatures and incident light intensities of 110 and 500 μmol photons m−2 s−1. The time course of cell reproduction (DNA replication, cellular division), growth (total RNA, protein, cell dry matter, cell size), and synthesis of energy reserves (net starch, neutral lipid) was studied. At 40 °C, cell reproduction was arrested, but growth and accumulation of energy reserves continued; this led to the production of giant cells enriched in protein, starch, and neutral lipids. Furthermore, we examined whether the increased temperature could alleviate the effects of deuterated water on Parachlorella kessleri growth and division; results show that supra-optimal temperature can be used in algal biotechnology for the production of protein, (deuterated) starch, and neutral lipids
    corecore