122 research outputs found

    Learning Convolutional Networks for Content-weighted Image Compression

    Full text link
    Lossy image compression is generally formulated as a joint rate-distortion optimization to learn encoder, quantizer, and decoder. However, the quantizer is non-differentiable, and discrete entropy estimation usually is required for rate control. These make it very challenging to develop a convolutional network (CNN)-based image compression system. In this paper, motivated by that the local information content is spatially variant in an image, we suggest that the bit rate of the different parts of the image should be adapted to local content. And the content aware bit rate is allocated under the guidance of a content-weighted importance map. Thus, the sum of the importance map can serve as a continuous alternative of discrete entropy estimation to control compression rate. And binarizer is adopted to quantize the output of encoder due to the binarization scheme is also directly defined by the importance map. Furthermore, a proxy function is introduced for binary operation in backward propagation to make it differentiable. Therefore, the encoder, decoder, binarizer and importance map can be jointly optimized in an end-to-end manner by using a subset of the ImageNet database. In low bit rate image compression, experiments show that our system significantly outperforms JPEG and JPEG 2000 by structural similarity (SSIM) index, and can produce the much better visual result with sharp edges, rich textures, and fewer artifacts

    Learning Motion Refinement for Unsupervised Face Animation

    Full text link
    Unsupervised face animation aims to generate a human face video based on the appearance of a source image, mimicking the motion from a driving video. Existing methods typically adopted a prior-based motion model (e.g., the local affine motion model or the local thin-plate-spline motion model). While it is able to capture the coarse facial motion, artifacts can often be observed around the tiny motion in local areas (e.g., lips and eyes), due to the limited ability of these methods to model the finer facial motions. In this work, we design a new unsupervised face animation approach to learn simultaneously the coarse and finer motions. In particular, while exploiting the local affine motion model to learn the global coarse facial motion, we design a novel motion refinement module to compensate for the local affine motion model for modeling finer face motions in local areas. The motion refinement is learned from the dense correlation between the source and driving images. Specifically, we first construct a structure correlation volume based on the keypoint features of the source and driving images. Then, we train a model to generate the tiny facial motions iteratively from low to high resolution. The learned motion refinements are combined with the coarse motion to generate the new image. Extensive experiments on widely used benchmarks demonstrate that our method achieves the best results among state-of-the-art baselines.Comment: NeurIPS 202
    • …
    corecore