7 research outputs found

    Stability and safety estimates and tests of a superconducting bus-line for large-scale superconducting coils

    Get PDF
    We have been developing a flexible superconducting bus-line as a unit electrical feeder between large-scale superconducting coils and their power supplies away from the coils. The designed superconducting bus-line consists of a pair of +/- aluminum stabilized NbTi/Cu compacted strand cables and a coaxial four-channel transfer line. A full-scale model of the SC bus-line (20 m long) has been constructed and tested successfully up to 40 kA without a quench under the short-circuit condition. Stability tests were also done by inducing a forced quench with heaters. A minimum propagation current larger than 32.5 kA was confirmed. Thus, the bus-line was cryogenically stabilized at the rated current of 30 kA. We have examined the test results and evaluated the stability and safety margins of this bus-line. The design criteria for a superconducting bus-line are also shown for large-scale superconducting coils with operating current as a parameter

    Development and tests of a flexible superconducting bus-line for the Large Helical Device

    Get PDF
    A flexible superconducting bus-line is proposed as an electrical feeder between the superconducting coils of the Large Helical Device (LHD) and the device\u27s power supplies. The bus-line consists of superconducting cables and a cryogenic flexible transfer-line. A specially developed aluminum stabilized NbTi/Cu compacted strand cable satisfies requirements for large current capacity, high stability, high reliability and flexibility. A full-scale model with a length of 20 m was designed and constructed to investigate the feasibility and performance of the superconducting bus-line. Its fabrication, transportation, installation, cooling and excitation tests were successfully carried out. The bus-line was very stable and could be excited up to 40 kA (rated current is 30 kA) without a quench. The stability, current distribution and heat load were also measure

    Improvement of a high current DC power supply system for testing the large scaled superconducting cables and magnets

    Get PDF
    A DC 75 kA power supply system was constructed to test the SC (superconducting) R&D (research and development) cables and magnets for the Large Helical Device (LHD). It consists of three 25 kA unit banks. A unit bank has two double-star-rectifier connections with the inter-phase reactors. A digital feedback control method is applied to the automatic current regulation (ACR) in each unit bank. For shortening the dead time of the feedback process, a new algorithm of a digital phase controller for the ACR is investigated. A Bode diagram of the feedback process is directly measured. It is confirmed that the dead time of the feedback process is reduced to one sixth, and that the feedback gain of PID (proportional, integral and differential) compensation is improved by a factor of two from the original metho
    corecore