17 research outputs found
A Simple and Efficient RSS-AOA Based Localization with Heterogeneous Anchor Nodes
Accurate and reliable localization is crucial for various wireless
communication applications. Numerous studies have proposed accurate
localization methods using hybrid received signal strength (RSS) and angle of
arrival (AOA) measurements. However, these studies typically assume identical
measurement noise distributions for different anchor nodes, which may not
accurately reflect real-world scenarios with varying noise distributions. In
this paper, we propose a simple and efficient localization method based on
hybrid RSS-AOA measurements that accounts for the varying measurement noises of
different nodes. We derive a closed-form estimator for the target location
based on the linear weighted least squares (LWLS) algorithm, with each LWLS
equation weight being the inverse of its residual variance. Due to the unknown
variances of LWLS equation residuals, we employ a two-stage LWLS method for
estimation. The proposed method is computationally efficient, adaptable to
different types of wireless communication systems and environments, and
provides more accurate and reliable localization results compared to existing
RSS-AOA localization techniques. Additionally, we derive the Cramer-Rao Lower
Bound (CRLB) for the RSS-AOA signal sequences used in the proposed method.
Simulation results demonstrate the superiority of the proposed method
Accurate RSS-Based Localization Using an Opposition-Based Learning Simulated Annealing Algorithm
Wireless sensor networks require accurate target localization, often achieved
through received signal strength (RSS) localization estimation based on maximum
likelihood (ML). However, ML-based algorithms can suffer from issues such as
low diversity, slow convergence, and local optima, which can significantly
affect localization performance. In this paper, we propose a novel localization
algorithm that combines opposition-based learning (OBL) and simulated annealing
algorithm (SAA) to address these challenges. The algorithm begins by generating
an initial solution randomly, which serves as the starting point for the SAA.
Subsequently, OBL is employed to generate an opposing initial solution,
effectively providing an alternative initial solution. The SAA is then executed
independently on both the original and opposing initial solutions, optimizing
each towards a potential optimal solution. The final solution is selected as
the more effective of the two outcomes from the SAA, thereby reducing the
likelihood of the algorithm becoming trapped in local optima. Simulation
results indicate that the proposed algorithm consistently outperforms existing
algorithms in terms of localization accuracy, demonstrating the effectiveness
of our approach
A Study of the Mechanism of the Congruence of Leader–Follower Power Distance Orientation on Employees’ Task Performance
Based on implicit leadership theory, we examine the congruence effect of leader–follower power distance orientation (PDO) on follower trust in supervisor and work engagement, which in turn influences employees’ task performance. Results of polynomial regressions on 526 dyads supported the congruence effect hypothesis. The results show that (1) the congruence of leader–follower PDO leads to better performance; (2) under the condition of congruence, subordinate task performance is higher when leader–follower PDO matching in low–low ratings congruence than it is in high–high ratings congruence; (3) under the condition of asymmetrical incongruence, the follower had higher task performance when a leader’s PDO is lower than a follower’s PDO; (4) trust in supervisor and the work engagement mediate the effect of congruence of leader–follower PDO on employees’ task performance; (5) trust in supervisor also mediates the effect of congruence of leader–follower PDO on employees’ work engagement
ICS-ResNet: A Lightweight Network for Maize Leaf Disease Classification
The accurate identification of corn leaf diseases is crucial for preventing disease spread and improving corn yield. Plant leaf images are often affected by factors such as complex backgrounds, climate, light, and sample data imbalance. To address these issues, we propose a lightweight convolutional neural network, ICS-ResNet, based on ResNet50. This network incorporates improved spatial and channel attention modules as well as a deep separable residual structure to enhance recognition accuracy. (1) The residual connections in the ResNet network prevent gradient loss during deep network training. (2) The improved channel attention (ICA) and spatial attention (ISA) modules fully utilize semantic information from different feature layers to accurately localize key features of the network. (3) To reduce the number of parameters and lower computational costs, we replace traditional convolutional computation with a depth-separable residual structure. (4) We also employ cosine annealing to dynamically adjust the learning rate, enhancing the network’s training stability, improving model convergence, and preventing local optima. Experiments on the corn dataset in Plant Village compare the proposed ICS-ResNet with eight popular networks: CSPNet, InceptionNet_v3, EfficientNet, ShuffleNet, MobileNet, ResNet50, ResNet101 and ResNet152. The results show that the ICS-ResNet achieves an accuracy of 98.87%, which is 5.03%, 3.18%, 1.13%, 1.81%, 1.13%, 0.68%, 0.44% and 0.60% higher than the other networks, respectively. Furthermore, the number of parameters and computations are reduced by 69.21% and 54.88%, respectively, compared to the original ResNet50 network, significantly improving the efficiency of corn leaf disease classification. The study provides strong technical support for sustainable agriculture and the promotion of agricultural science and technology innovation
Accurate Theoretical Models for Frequency Diverse Array Based Wireless Power Transmission
Wireless power transfer (WPT) is a well-known problem, and has received wide attention in the next generation industrial applications and consumer electronics. On the other hand, frequency diverse array (FDA) is a new concept with the ability to generate a range-angle dependent beampattern. Therefore, some researchers are engaged in designing WPT systems based on the FDA framework (FDA-WPT) instead of phased arrays. Unlike phased arrays, the FDA beampattern is time-variant. Therefore, existing beam collection efficiency models based on the phased array are not suitable for the FDA-WPT system. More importantly, the time-variant property of FDAs is usually ignored in the literature, and the system configuration of the target area where the power-harvesting end is located does not conform to the actual WPT scenario. In this paper, we derive and present accurate models of the FDA-WPT system. The power transfer performance of the corrected FDA-WPT system is then compared with the phased array based WPT system. Simulation results demonstrate that time-variant consideration in the FDA-WPT model causes difficulty in controlling the main beam direction to focus the power. The accurate FDA-WPT is theoretically investigated, and numerical simulations are implemented to validate the theoretical analysis
Accurate Theoretical Models for Frequency Diverse Array Based Wireless Power Transmission
Wireless power transfer (WPT) is a well-known problem, and has received wide attention in the next generation industrial applications and consumer electronics. On the other hand, frequency diverse array (FDA) is a new concept with the ability to generate a range-angle dependent beampattern. Therefore, some researchers are engaged in designing WPT systems based on the FDA framework (FDA-WPT) instead of phased arrays. Unlike phased arrays, the FDA beampattern is time-variant. Therefore, existing beam collection efficiency models based on the phased array are not suitable for the FDA-WPT system. More importantly, the time-variant property of FDAs is usually ignored in the literature, and the system configuration of the target area where the power-harvesting end is located does not conform to the actual WPT scenario. In this paper, we derive and present accurate models of the FDA-WPT system. The power transfer performance of the corrected FDA-WPT system is then compared with the phased array based WPT system. Simulation results demonstrate that time-variant consideration in the FDA-WPT model causes difficulty in controlling the main beam direction to focus the power. The accurate FDA-WPT is theoretically investigated, and numerical simulations are implemented to validate the theoretical analysis
Informal status and taking charge: the different roles of OBSE, P-J fit, and P-S fit
Status in an organization is considered a significant antecedent to an employee’s work-related behaviors. However, the relationship between knowledge workers’ informal status and “taking charge” has been ignored in previous human resource management research. Based on the self-consistency theory, this study examines the mechanisms underlying the influence of knowledge workers’ informal status on taking charge. Data were collected from 337 dyads of employees and their immediate supervisors in 24 enterprises and companies. The results of moderated-mediation analysis indicate organization-based self-esteem (OBSE) fully mediated the positive relationship between knowledge workers’ informal status and taking charge, whereas person-job fit (P-J fit) and person-supervisor fit (P-S fit) each moderated the relationship between knowledge workers’ informal status and OBSE, in addition to the indirect effect of knowledge workers’ informal status on taking charge. Specifically, the indirect effect was strongest when P-J fit or P-S fit was high. The theoretical and managerial implications of the findings, limitations of the study, and future research directions are discussed