16 research outputs found

    Fluctuation theorems in presence of information gain and feedback

    Full text link
    In this study, we rederive the fluctuation theorems in presence of feedback, by assuming the known Jarzynski equality and detailed fluctuation theorems. We first reproduce the already known work theorems for a classical system, and then extend the treatment to the other classical theorems. For deriving the extended quantum fluctuation theorems, we have considered open systems. No assumption is made on the nature of environment and the strength of system-bath coupling. However, it is assumed that the measurement process involves classical errors.Comment: 8 pages, 1 figur

    Fluctuation relations for heat engines in time-periodic steady states

    Full text link
    A fluctuation relation for heat engines (FRHE) has been derived recently. In the beginning, the system is in contact with the cooler bath. The system is then coupled to the hotter bath and external parameters are changed cyclically, eventually bringing the system back to its initial state, once the coupling with the hot bath is switched off. In this work, we lift the condition of initial thermal equilibrium and derive a new fluctuation relation for the central system (heat engine) being in a time-periodic steady state (TPSS). Carnot's inequality for classical thermodynamics follows as a direct consequence of this fluctuation theorem even in TPSS. For the special cases of the absence of hot bath and no extraction of work, we obtain the integral fluctuation theorem for total entropy and the generalized exchange fluctuation theorem, respectively. Recently microsized heat engines have been realized experimentally in the TPSS. We numerically simulate the same model and verify our proposed theorems.Comment: 9 page
    corecore