4,390 research outputs found

    Approximation algorithms for Capacitated Facility Location Problem with Penalties

    Full text link
    In this paper, we address the problem of capacitated facility location problem with penalties (CapFLPP) paid per unit of unserved demand. In case of uncapacitated FLP with penalties demands of a client are either entirely met or are entirely rejected and penalty is paid. In the uncapacitated case, there is no reason to serve a client partially. Whereas, in case of CapFLPP, it may be beneficial to serve a client partially instead of not serving at all and, pay the penalty for the unmet demand. Charikar et. al. \cite{charikar2001algorithms}, Jain et. al. \cite{jain2003greedy} and Xu- Xu \cite{xu2009improved} gave 33, 22 and 1.85261.8526 approximation, respectively, for the uncapacitated case . We present (5.83+ϵ)(5.83 + \epsilon) factor for the case of uniform capacities and (8.532+ϵ)(8.532 + \epsilon) factor for non-uniform capacities

    A Random Walk Perspective on Hide-and-Seek Games

    Get PDF
    We investigate hide-and-seek games on complex networks using a random walk framework. Specifically, we investigate the efficiency of various degree-biased random walk search strategies to locate items that are randomly hidden on a subset of vertices of a random graph. Vertices at which items are hidden in the network are chosen at random as well, though with probabilities that may depend on degree. We pitch various hide and seek strategies against each other, and determine the efficiency of search strategies by computing the average number of hidden items that a searcher will uncover in a random walk of nn steps. Our analysis is based on the cavity method for finite single instances of the problem, and generalises previous work of De Bacco et al. [1] so as to cover degree-biased random walks. We also extend the analysis to deal with the thermodynamic limit of infinite system size. We study a broad spectrum of functional forms for the degree bias of both the hiding and the search strategy and investigate the efficiency of families of search strategies for cases where their functional form is either matched or unmatched to that of the hiding strategy. Our results are in excellent agreement with those of numerical simulations. We propose two simple approximations for predicting efficient search strategies. One is based on an equilibrium analysis of the random walk search strategy. While not exact, it produces correct orders of magnitude for parameters characterising optimal search strategies. The second exploits the existence of an effective drift in random walks on networks, and is expected to be efficient in systems with low concentration of small degree nodes.Comment: 31 pages, 10 (multi-part) figure

    Hierarchy in Gene Expression is Predictive for Adult Acute Myeloid Leukemia

    Full text link
    Cancer progresses with a change in the structure of the gene network in normal cells. We define a measure of organizational hierarchy in gene networks of affected cells in adult acute myeloid leukemia (AML) patients. With a retrospective cohort analysis based on the gene expression profiles of 116 acute myeloid leukemia patients, we find that the likelihood of future cancer relapse and the level of clinical risk are directly correlated with the level of organization in the cancer related gene network. We also explore the variation of the level of organization in the gene network with cancer progression. We find that this variation is non-monotonic, which implies the fitness landscape in the evolution of AML cancer cells is nontrivial. We further find that the hierarchy in gene expression at the time of diagnosis may be a useful biomarker in AML prognosis.Comment: 18 pages, 5 figures, to appear in Physical Biolog
    • …
    corecore