5 research outputs found

    A Novel Stick-Slip Type Rotary Piezoelectric Actuator

    No full text
    A novel stick-slip rotary piezoelectric actuator is designed for optical use. The actuator is proposed, fabricated, and tested with the aim of realizing both fine resolution and a long stroke. The dynamic model of the actuator is established, and simulations are performed to discover how the input driving voltage affects the stick-slip motion of the actuator. An experimental system is built to evaluate the performance of the actuator at different frequencies, voltages, and numbers of driving piezoelectric stacks. Experimental results show that the minimal output stepping angle is 3.5 μrad (0.2 millidegrees) under a sawtooth waveform having a voltage of 13 V and frequency of 3000 Hz and that the velocity reaches 0.44 rad/s (25°/s) under a sawtooth waveform having a voltage of 93 V and frequency of 3000 Hz, while the stroke is infinite. The proposed actuator provides stable and accurate rotary motion and realizes a high velocity

    Effect of load and speed on warship power rear drive system helical gear anti-scuffing properties in thermal elasto-hydrodynamic lubrication

    No full text
    The key parameters which caused the scoring failure of helical gears are operating load and speed. In this study, the simulations using geometric meshing theory were carried out to investigate the effect of load and speed of warship transmission helical gear system on thermal elasto-hydrodynamic lubrication. The numerical algorithm for the analysis of three-dimensional thermal elasto-hydrodynamic lubrication used in this work has advantage that the film pressure and distributions can be calculated from Reynolds equation for all mixed lubrication regions without any specific boundary condition for the edge of solid contact region. Oil film pressure, film thickness as well as film temperature under different load and speed conditions were obtained and compared. In addition, experimental tests were conducted to determine gear surface temperature under different load and speed conditions. This work provided a guidance to understand the load- and speed-dependent thermal elasto-hydrodynamic lubrication
    corecore