3,874 research outputs found
Pseudo Mask Augmented Object Detection
In this work, we present a novel and effective framework to facilitate object
detection with the instance-level segmentation information that is only
supervised by bounding box annotation. Starting from the joint object detection
and instance segmentation network, we propose to recursively estimate the
pseudo ground-truth object masks from the instance-level object segmentation
network training, and then enhance the detection network with top-down
segmentation feedbacks. The pseudo ground truth mask and network parameters are
optimized alternatively to mutually benefit each other. To obtain the promising
pseudo masks in each iteration, we embed a graphical inference that
incorporates the low-level image appearance consistency and the bounding box
annotations to refine the segmentation masks predicted by the segmentation
network. Our approach progressively improves the object detection performance
by incorporating the detailed pixel-wise information learned from the
weakly-supervised segmentation network. Extensive evaluation on the detection
task in PASCAL VOC 2007 and 2012 [12] verifies that the proposed approach is
effective
Ranking Medical Subject Headings using a factor graph model.
Automatically assigning MeSH (Medical Subject Headings) to articles is an active research topic. Recent work demonstrated the feasibility of improving the existing automated Medical Text Indexer (MTI) system, developed at the National Library of Medicine (NLM). Encouraged by this work, we propose a novel data-driven approach that uses semantic distances in the MeSH ontology for automated MeSH assignment. Specifically, we developed a graphical model to propagate belief through a citation network to provide robust MeSH main heading (MH) recommendation. Our preliminary results indicate that this approach can reach high Mean Average Precision (MAP) in some scenarios
Fractal analysis of the effect of particle aggregation distribution on thermal conductivity of nanofluids
This project was supported by the National Natural Science Foundation of China (No. 41572116), the Fundamental Research Funds for the Central Universities, China University of Geosciences, Wuhan) (No. CUG160602).Peer reviewedPostprin
- ā¦