798 research outputs found

    Strong Aperiodic X-ray Variability and Quasi-Periodic Oscillation in X-ray Nova XTE J1550-564

    Get PDF
    We report the discovery of strong aperiodic X-ray variability and quasi-periodic oscillation (QPO) in the X-ray light curves of a new X-ray Nova, XTE J1550-564, and the evolution of the observed temporal properties during the rise of the recent X-ray outburst. The power spectral analysis of the first observation reveals strong aperiodic X-ray variability of the source (~28%), as well as the presence of a QPO at ~82 mHz with fractional rms amplitude ~14% over the 2-60 keV energy range. Also apparent is the first harmonic of the QPO with the amplitude ~9%. As the X-ray flux increases, the source tends to become less variable, and the QPO frequency increases rapidly, from 82 mHz to 4 Hz, over the flux (2-50 keV) range of 1.73-5.75 x 10^{-8} ergs cm^{-2} s^{-1}. The amplitude of the fundamental component of the QPO varies little, while that of the harmonic follows a decreasing trend. The fundamental component strengthens toward high energies, while its harmonic weakens. Initially, the power spectrum is roughly flat at low frequencies and turns into a power law at high frequencies, with the QPO harmonic sitting roughly at the break. In later observations, however, the high-frequency portion of the continuum can actually be better described by a broken power law (as opposed to a simple power law). This effect becomes more apparent at higher energies. The overall amplitude of the continuum shows a similar energy dependence to that of the fundamental component of the QPO. Strong rapid X-ray variability, as well as hard energy spectrum, makes XTE J1550-564 a good black hole candidate. We compare its temporal properties with those of other black hole candidates.Comment: 12 pages, including 5 figures. To appear in ApJ Letters, vol. 512 (1999

    VIB5 database with accurate ab initio quantum chemical molecular potential energy surfaces

    Get PDF
    High-level ab initio quantum chemical (QC) molecular potential energy surfaces (PESs) are crucial for accurately simulating molecular rotation-vibration spectra. Machine learning (ML) can help alleviate the cost of constructing such PESs, but requires access to the original ab initio PES data, namely potential energies computed on high-density grids of nuclear geometries. In this work, we present a new structured PES database called VIB5, which contains high-quality ab initio data on 5 small polyatomic molecules of astrophysical significance (CH3Cl, CH4, SiH4, CH3F, and NaOH). The VIB5 database is based on previously used PESs, which, however, are either publicly unavailable or lacking key information to make them suitable for ML applications. The VIB5 database provides tens of thousands of grid points for each molecule with theoretical best estimates of potential energies along with their constituent energy correction terms and a data-extraction script. In addition, new complementary QC calculations of energies and energy gradients have been performed to provide a consistent database, which, e.g., can be used for gradient-based ML methods

    Description of 178^{178}Hfm2^{m2} in the constrained relativistic mean field theory

    Full text link
    The properties of the ground state of 178^{178}Hf and the isomeric state 178^{178}Hfm2^{m2} are studied within the adiabatic and diabatic constrained relativistic mean field (RMF) approaches. The RMF calculations reproduce well the binding energy and the deformation for the ground state of 178^{178}Hf. Using the ground state single-particle eigenvalues obtained in the present calculation, the lowest excitation configuration with Kπ=16+K^\pi=16^+ is found to be Îœ(7/2−[514])−1(9/2+[624])1\nu(7/2^-[514])^{-1}(9/2^+[624])^{1} π(7/2+[404])−1(9/2−[514])1\pi(7/2^+[404])^{-1}(9/2^-[514])^{1}. Its excitation energy calculated by the RMF theory with time-odd fields taken into account is equal to 2.801 MeV, i.e., close to the 178^{178}Hfm2^{m2} experimental excitation energy 2.446 MeV. The self-consistent procedure accounting for the time-odd component of the meson fields is the most important aspect of the present calculation.Comment: 12 pages(preprint), 2 figures, 1 tabl

    On the Solution to the "Frozen Star" Paradox, Nature of Astrophysical Black Holes, non-Existence of Gravitational Singularity in the Physical Universe and Applicability of the Birkhoff's Theorem

    Full text link
    Oppenheimer and Snyder found in 1939 that gravitational collapse in vacuum produces a "frozen star", i.e., the collapsing matter only asymptotically approaches the gravitational radius (event horizon) of the mass, but never crosses it within a finite time for an external observer. Based upon our recent publication on the problem of gravitational collapse in the physical universe for an external observer, the following results are reported here: (1) Matter can indeed fall across the event horizon within a finite time and thus BHs, rather than "frozen stars", are formed in gravitational collapse in the physical universe. (2) Matter fallen into an astrophysical black hole can never arrive at the exact center; the exact interior distribution of matter depends upon the history of the collapse process. Therefore gravitational singularity does not exist in the physical universe. (3) The metric at any radius is determined by the global distribution of matter, i.e., not only by the matter inside the given radius, even in a spherically symmetric and pressureless gravitational system. This is qualitatively different from the Newtonian gravity and the common (mis)understanding of the Birkhoff's Theorem. This result does not contract the "Lemaitre-Tolman-Bondi" solution for an external observer.Comment: 8 pages, 4 figures, invited plenary talk at "The first Galileo-Xu Guangqi conference", Shanghai, China, 2009. To appear in International Journal of Modern Physics D (2010

    Cross-Correlation Detection of Point Sources in WMAP First Year Data

    Get PDF
    We apply a Cross-correlation (CC) method developed previously for detecting gamma-ray point sources to the WMAP first year data by using the Point-Spread Function of WMAP and obtain a full sky CC coefficient map. Analyzing this map, we find that the CC method is a powerful tool to examine the WMAP foreground residuals which can be further cleaned accordingly. Evident foreground signals are found in WMAP foreground cleaned maps and Tegmark cleaned map. In this process 101 point-sources are detected, and 26 of them are new sources besides the originally listed WMAP 208 sources. We estimate the flux of these new sources and verify them by another method. As a result, a revised mask file based on the WMAP first year data is produced by including these new sources.Comment: 14 pages, 10 figures; accepted for publication by ChJA

    A brief review of topological photonics in one, two, and three dimensions

    Full text link
    Topological photonics has attracted increasing attention in recent years due to the unique opportunities it provides to manipulate light in a robust way immune to disorder and defects. Up to now, diverse photonic platforms, rich physical mechanisms and fruitful device applications have been proposed for topological photonics, including one-way waveguide, topological lasing, topological nanocavity, Dirac and Weyl points, Fermi arcs, nodal lines, etc. In this review, we provide an introduction to the field of topological photonics through the lens of topological invariants and bulk-boundary correspondence in one, two, and three dimensions, which may not only offer a unified understanding about the underlying robustness of diverse and distinct topological phenomena of light, but could also inspire further developments by introducing new topological invariants and unconventional bulk-boundary correspondence to the research of topological photonics.Comment: 29 pages, 12 figures, 341 reference

    Propeller driven spectral state transition in LMXB 4U 1608-52

    Get PDF
    Spectral state transitions in neutron star LMXB systems have been widely observed yet not well understood. Here we report an abrupt spectral change in 4U 1608-52, a typical atoll source, during its decay phase of the 2004 outburst. The source is found to undergo sudden changes in its spectral hardness and other properties. The transition occurred when its luminosity is between (3.3-5.3) E36 ergs/s, assuming a distance of 3.6 kpc. Interpreting this event in terms of the propeller effect, we infer the neutron star surface magnetic field as (1.4-1.8) E8 Gauss. We also briefly discuss similarities and differences between the spectral states of neutron star and black hole binary systems.Comment: 13 pages, 3 figures, accepted by Astrophysical Journa

    Evidence for Doppler-Shifted Iron Emission Lines in Black Hole Candidate 4U 1630-47

    Get PDF
    We report the first detection of a pair of correlated emission lines in the X-ray spectrum of black hole candidate 4U 1630-47 during its 1996 outburst, based on RXTE observations of the source. At the peak plateau of the outburst, the emission lines are detected, centered mostly at ∌\sim5.7 keV and ∌\sim7.7 keV, respectively, while the line energies exhibit random variability ∌\sim5%. Interestingly, the lines move in a concerted manner to keep their separation roughly constant. The lines also vary greatly in strength, but with the lower-energy line always much stronger than the higher-energy one. The measured equivalent width ranges from ∌\sim50 eV to ∌\sim270 eV for the former, and from insignificant detection to ∌\sim140 eV for the latter; the two are reasonably correlated. The correlation between the lines implies a causal connection --- perhaps they share a common origin. Both lines may arise from a single KαK_{\alpha} line of highly ionized iron that is Doppler-shifted either in a Keplerian accretion disk or in a bi-polar outflow or even both. In both scenarios, a change in the line energy might simply reflect a change in the ionization state of line-emitting matter. We discuss the implication of the results and also raise some questions about such interpretations.Comment: To appear in Ap

    Pseudospin symmetry and its approximation in real nuclei

    Full text link
    The origin of pseudospin symmetry and its broken in real nuclei are discussed in the relativistic mean field theory. In the exact pseudospin symmetry, even the usual intruder orbits have degenerate partners. In real nuclei, pseudospin symmetry is approximate, and the partners of the usual intruder orbits will disappear. The difference is mainly due to the pseudo spin-orbit potential and the transition between them is discussed in details. The contribution of pseudospin-orbit potential for intruder orbits is quite large, compared with that for pseudospin doublets. The disappearance of the pseudospin partner for the intruder orbit can be understood from the properties of its wave function.Comment: 10 pages, 3 figure
    • 

    corecore