4,431 research outputs found

    A strong negative correlation between radio loudness RUVR_{\rm UV} and optical-to-X-ray spectral index αox\alpha_{\rm ox} in low-luminosity AGNs

    Full text link
    It has been argued for years that the accretion mode changes from bright active galactic nuclei (AGNs) to low-luminosity AGNs (LLAGNs) at a rough dividing point of bolometric Eddington ratio λ102\lambda \sim 10^{-2}. In this work, we strengthen this scenario through investigation of the relationship between the radio loudness RUVR_{\rm UV} and the optical-to-X-ray spectral index αox\alpha_{\rm ox} in LLAGNs with 106λ10310^{-6} \lesssim \lambda \lesssim 10^{-3}. We compile from literature a sample of 32 LLAGNs, consisting 18 LINERs and 14 low Eddington ratio Seyfert galaxies, and observe a strong negative RUVR_{\rm UV}--αox\alpha_{\rm ox} relationship, with large scatter in both RUVR_{\rm UV} and αox\alpha_{\rm ox}. We further demonstrate that this negative correlation, and the additional two negative relationships reported in literature (RUVR_{\rm UV}--λ\lambda and αox\alpha_{\rm ox}--λ\lambda correlations), can be understood consistently and comprehensively under the truncated accretion--jet model, the model that has been applied successfully applied to LLAGNs. We argue that the scatter in the observations are (mainly) due to the spread in the viscosity parameter α\alpha of a hot accretion flow, a parameter that potentially can serve as a diagnose of the strength and/or configuration of magnetic fields in accretion flows.Comment: 8 pages, 3 figures, 2 tables. Accepted by MNRA

    Interference Induced Asymmetric Transmission Through A Monolayer of Anisotropic Chiral Metamolecules

    Full text link
    We show that asymmetric transmission for linear polarizations can be easily achieved by a monolayer of anisotropic chiral metamolecules through the constructive and destructive interferences between the contributions from anisotropy and chirality. Our analysis is based on the interaction of electromagnetic waves with the constituent electric and magnetic dipoles of the metamaterials, and an effective medium formulation. In addition, asymmetric transmission in amplitude can be effectively controlled by the interference between spectrally detuned resonances. Our findings shed light on the design of metamaterials for achieving strong asymmetric transmission.Comment: 15 pages, 4 figure

    Observation of Zeeman effect in topological surface state with distinct material dependence

    Get PDF
    The helical Dirac fermions on the surface of topological insulators host novel relativistic quantum phenomena in solids. Manipulating spins of topological surface state (TSS) represents an essential step towards exploring the theoretically predicted exotic states related to time reversal symmetry (TRS) breaking via magnetism or magnetic field. Understanding Zeeman effect of TSS and determining its g-factor are pivotal for such manipulations in the latter form of TRS breaking. Here, we report those direct experimental observations in Bi2Se3 and Sb2Te2Se by spectroscopic imaging scanning tunneling microscopy. The Zeeman shifting of zero mode Landau level is identified unambiguously by judiciously excluding the extrinsic influences associated with the non-linearity in the TSS band dispersion and the spatially varying potential. The g-factors of TSS in Bi2Se3 and Sb2Te2Se are determined to be 18 and -6, respectively. This remarkable material dependence opens a new route to control the spins in the TSS.Comment: main text: 17 pages, 4 figures; supplementary: 15 pages, 7 figure

    Measurement-device-independent QKD with Modified Coherent State

    Full text link
    The measurement-device-independent quantum key distribution (MDI-QKD) protocol has been proposed for the purpose of removing the detector side channel attacks. Due to the multi-photon events of coherent states sources, real-life implementations of MDI-QKD protocol must employ decoy states to beat the photon-number-splitting attack. Decoy states for MDI-QKD based on the weak coherent states have been studied recently. In this paper, we propose to perform MDI-QKD protocol with modified coherent states (MCS) sources. We simulate the performance of MDI-QKD with the decoy states based on MCS sources. And our simulation indicates that both the secure-key rate and transmission distance can be improved evidently with MCS sources.The physics behind this improvement is that the probability of multi-photon events of the MCS is lower than that of weak coherent states while at the same time the probability of single-photon is higher

    Security of modified Ping-Pong protocol in noisy and lossy channel

    Full text link
    The "Ping-Pong" (PP) protocol is a two-way quantum key protocol based on entanglement. In this protocol, Bob prepares one maximally entangled pair of qubits, and sends one qubit to Alice. Then, Alice performs some necessary operations on this qubit and sends it back to Bob. Although this protocol was proposed in 2002, its security in the noisy and lossy channel has not been proven. In this report, we add a simple and experimentally feasible modification to the original PP protocol, and prove the security of this modified PP protocol against collective attacks when the noisy and lossy channel is taken into account. Simulation results show that our protocol is practical.Comment: 7 pages, 2 figures, published in scientific report
    corecore