1 research outputs found

    Application of Principal Component Analysis-Assisted Neural Networks for the Rotor Blade Load Prediction

    No full text
    This paper presents a novel approach of principal component analysis- (PCA-) assisted back propagation (BP) neural networks for the problem of rotor blade load prediction. 86.5 hours of real flight data were collected from many steady-state and transient flight maneuvers at different altitudes and airspeeds. Prediction of the blade loads was determined by the PCA-BP model from 16 flight parameters measured and monitored by the flight control computer already present in the helicopter. PCA was applied to reduce the dimension of the flight parameters influencing the component load and eliminate the correlation among flight parameters. Thus, obtained principal components were used as input vectors of the BP neural network. The combined PCA-BP neural network model was trained and tested by real flight data. Comparison of this model and to a BP neural network model as well as to a multiple linear regression (MLR) model was also done. The results of comparison demonstrate that the PCA-BP model has higher prediction precision with an average error of 2.46%, while 4.49% for BP and 10.20% for MLR. The results also reveal that the PCA-BP model has a shorter convergence path than the BP model. This method not only is useful in establishing the load spectra of helicopter rotor in-service where installation of strain gauges is impractical but also can reduce the cost of installation and maintenance measured by strain gauges
    corecore