7 research outputs found

    Chemical Properties from Graph Neural Network-Predicted Electron Densities

    Full text link
    According to density functional theory, any chemical property can be inferred from the electron density, making it the most informative attribute of an atomic structure. In this work, we demonstrate the use of established physical methods to obtain important chemical properties from model-predicted electron densities. We introduce graph neural network architectural choices that provide physically relevant and useful electron density predictions. Despite not training to predict atomic charges, the model is able to predict atomic charges with an order of magnitude lower error than a sum of atomic charge densities. Similarly, the model predicts dipole moments with half the error of the sum of atomic charge densities method. We demonstrate that larger data sets lead to more useful predictions in these tasks. These results pave the way for an alternative path in atomistic machine learning, where data-driven approaches and existing physical methods are used in tandem to obtain a variety of chemical properties in an explainable and self-consistent manner

    GemNet-OC: Developing Graph Neural Networks for Large and Diverse Molecular Simulation Datasets

    Full text link
    Recent years have seen the advent of molecular simulation datasets that are orders of magnitude larger and more diverse. These new datasets differ substantially in four aspects of complexity: 1. Chemical diversity (number of different elements), 2. system size (number of atoms per sample), 3. dataset size (number of data samples), and 4. domain shift (similarity of the training and test set). Despite these large differences, benchmarks on small and narrow datasets remain the predominant method of demonstrating progress in graph neural networks (GNNs) for molecular simulation, likely due to cheaper training compute requirements. This raises the question -- does GNN progress on small and narrow datasets translate to these more complex datasets? This work investigates this question by first developing the GemNet-OC model based on the large Open Catalyst 2020 (OC20) dataset. GemNet-OC outperforms the previous state-of-the-art on OC20 by 16% while reducing training time by a factor of 10. We then compare the impact of 18 model components and hyperparameter choices on performance in multiple datasets. We find that the resulting model would be drastically different depending on the dataset used for making model choices. To isolate the source of this discrepancy we study six subsets of the OC20 dataset that individually test each of the above-mentioned four dataset aspects. We find that results on the OC-2M subset correlate well with the full OC20 dataset while being substantially cheaper to train on. Our findings challenge the common practice of developing GNNs solely on small datasets, but highlight ways of achieving fast development cycles and generalizable results via moderately-sized, representative datasets such as OC-2M and efficient models such as GemNet-OC. Our code and pretrained model weights are open-sourced

    AdsorbML: A Leap in Efficiency for Adsorption Energy Calculations using Generalizable Machine Learning Potentials

    Full text link
    Computational catalysis is playing an increasingly significant role in the design of catalysts across a wide range of applications. A common task for many computational methods is the need to accurately compute the adsorption energy for an adsorbate and a catalyst surface of interest. Traditionally, the identification of low energy adsorbate-surface configurations relies on heuristic methods and researcher intuition. As the desire to perform high-throughput screening increases, it becomes challenging to use heuristics and intuition alone. In this paper, we demonstrate machine learning potentials can be leveraged to identify low energy adsorbate-surface configurations more accurately and efficiently. Our algorithm provides a spectrum of trade-offs between accuracy and efficiency, with one balanced option finding the lowest energy configuration 87.36% of the time, while achieving a 2000x speedup in computation. To standardize benchmarking, we introduce the Open Catalyst Dense dataset containing nearly 1,000 diverse surfaces and 100,000 unique configurations.Comment: 26 pages, 7 figures. Submitted to npj Computational Material

    Open Challenges in Developing Generalizable Large Scale Machine Learning Models for Catalyst Discovery

    Full text link
    The development of machine learned potentials for catalyst discovery has predominantly been focused on very specific chemistries and material compositions. While effective in interpolating between available materials, these approaches struggle to generalize across chemical space. The recent curation of large-scale catalyst datasets has offered the opportunity to build a universal machine learning potential, spanning chemical and composition space. If accomplished, said potential could accelerate the catalyst discovery process across a variety of applications (CO2 reduction, NH3 production, etc.) without additional specialized training efforts that are currently required. The release of the Open Catalyst 2020 (OC20) has begun just that, pushing the heterogeneous catalysis and machine learning communities towards building more accurate and robust models. In this perspective, we discuss some of the challenges and findings of recent developments on OC20. We examine the performance of current models across different materials and adsorbates to identify notably underperforming subsets. We then discuss some of the modeling efforts surrounding energy-conservation, approaches to finding and evaluating the local minima, and augmentation of off-equilibrium data. To complement the community's ongoing developments, we end with an outlook to some of the important challenges that have yet to be thoroughly explored for large-scale catalyst discovery.Comment: submitted to ACS Catalysi

    The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide Electrocatalysts

    Full text link
    The development of machine learning models for electrocatalysts requires a broad set of training data to enable their use across a wide variety of materials. One class of materials that currently lacks sufficient training data is oxides, which are critical for the development of Oxygen Evolution Reaction (OER) catalysts. To address this, we developed the Open Catalyst 2022 (OC22) dataset, consisting of 62,331 Density Functional Theory (DFT) relaxations (~9,854,504 single point calculations) across a range of oxide materials, coverages, and adsorbates. We define generalized total energy tasks that enable property prediction beyond adsorption energies; we test baseline performance of several graph neural networks; and we provide pre-defined dataset splits to establish clear benchmarks for future efforts. In the most general task, GemNet-OC sees a ~32% improvement in energy predictions when combining the chemically dissimilar Open Catalyst 2020 Dataset (OC20) and OC22 datasets via fine-tuning. Similarly, we achieved a ~19% improvement in total energy predictions on OC20 and a ~9% improvement in force predictions in OC22 when using joint training. We demonstrate the practical utility of a top performing model by capturing literature adsorption energies and important OER scaling relationships. We expect OC22 to provide an important benchmark for models seeking to incorporate intricate long-range electrostatic and magnetic interactions in oxide surfaces. The dataset and baseline models are open sourced, and a public leaderboard has been made available to encourage continued community developments on the total energy tasks and data.Comment: 48 pages, 14 figure
    corecore