3,895 research outputs found

    The X-ray Nature of Nucleus in Seyfert 2 Galaxy NGC 7590

    Full text link
    We present the result of the Chandra high-resolution observation of the Seyfert~2 galaxy NGC 7590. This object was reported to show no X-ray absorption in the low-spatial resolution ASCA data. The XMM observations show that the X-ray emission of NGC 7590 is dominated by an off-nuclear ultra-luminous X-ray source (ULX) and an extended emission from the host galaxy, and the nucleus is rather weak, likely hosting a Compton-thick AGN. Our recent Chandra observation of NGC 7590 enables to remove the X-ray contamination from the ULX and the extended component effectively. The nuclear source remains undetected at ~4x10^{-15} erg/s/cm^-2 flux level. Although not detected, Chandra data gives a 2--10 keV flux upper limit of ~6.1x10^{-15} erg/s/cm^-2 (at 3 sigma level), a factor of 3 less than the XMM value, strongly supporting the Compton-thick nature of the nucleus. In addition, we detected five off-nuclear X-ray point sources within the galaxy D25 ellipse, all with 2 -- 10 keV luminosity above 2x10^{38} erg/s (assuming the distance of NGC 7590). Particularly, the ULX previously identified by ROSAT data was resolved by Chandra into two distinct X-ray sources. Our analysis highlights the importance of high spatial resolution images in discovering and studying ULXs.Comment: 8 pages, 5 figures, RAA accepte

    Quantum spin Hall effect induced by electric field in silicene

    Full text link
    We investigate the transport properties in a zigzag silicene nanoribbon in the presence of an external electric field. The staggered sublattice potential and two kinds of Rashba spin-orbit couplings can be induced by the external electric field due to the buckled structure of the silicene. A bulk gap is opened by the staggered potential and gapless edge states appear in the gap by tuning the two kinds of Rashba spin-orbit couplings properly. Furthermore, the gapless edge states are spin-filtered and are insensitive to the non-magnetic disorder. These results prove that the quantum spin Hall effect can be induced by an external electric field in silicene, which may have certain practical significance in applications for future spintronics device.Comment: 4 pages, 5 figure

    Hidden-bottom molecular states from Σb()B()ΛbB()\Sigma^{(*)}_bB^{(*)}-\Lambda_bB^{(*)} interaction

    Full text link
    In this work, we study possible hidden-bottom molecular pentaquarks PbP_b from coupled-channel Σb()B()ΛbB()\Sigma^{(*)}_bB^{(*)}-\Lambda_bB^{(*)} interaction in the quasipotential Bethe-Salpeter equation approach. In isodoublet sector with I=1/2I=1/2, with the same reasonable parameters the interaction produces seven molecular states, a state near ΣbB \Sigma_bB threshold with spin parity JP=1/2J^P=1/2^-, a state near ΣbB\Sigma^*_bB threshold with 3/23/2^-, two states near ΣbB\Sigma_bB^* threshold with 1/21/2^- and 3/23/2^-, and three states near ΣbB\Sigma_b^*B^* threshold with 1/21/2^-, 3/23/2^-, and 5/25/2^-. The results suggest that three states near ΣbB\Sigma_b^* B^* threshold and two states near ΣbB\Sigma_b B^* threshold are very close, respectively, which may be difficult to distinguish in experiment without partial wave analysis. Compared with the hidden-charm pentaquark, the PbP_b states are relatively narrow with widths at an order of magnitude of 1 MeV or smaller. The importance of each channel considered is also discussed, and it is found that the ΛbB\Lambda_b B^* channel provides important contribution for the widths of those states. In isoquartet sector with I=3/2I=3/2, cutoff should be considerably enlarged to achieve bound states from the interaction, which makes the existence of such states unreliable. The results in the current work are helpful for searching for hidden-bottom molecular pentaquarks in future experiments, such as the COMPASS, J-PARC, and the Electron Ion Collider in China (EicC).Comment: 8 pages, 3 figure

    Target localization in wireless sensor networks for industrial control with selected sensors

    Get PDF
    This paper presents a novel energy-based target localization method in wireless sensor networks with selected sensors. In this method, sensors use Turbo Product Code (TPC) to transmit decisions to the fusion center. TPC can reduce bit error probability if communication channel errors exist. Moreover, in this method, thresholds for the energy-based target localization are designed using a heuristic method. This design method to find thresholds is suitable for uniformly distributed sensors and normally distributed targets. Furthermore, to save sensor energy, a sensor selection method is also presented. Simulation results showed that if sensors used TPC instead of Hamming code to transmit decisions to the fusion center, localization performance could be improved. Furthermore, the sensor selection method used can substantially reduce energy consumption for our target localization method. At the same time, this target localization method with selected sensors also provides satisfactory localization performance

    Anomalous second-order skin modes in Floquet non-Hermitian systems

    Full text link
    The non-Hermitian skin effect under open boundary conditions is widely believed to originate from the intrinsic spectral topology under periodic boundary conditions. If the eigenspectra under periodic boundary conditions have no spectral windings (e.g., piecewise arcs) or a finite area on the complex plane, there will be no non-Hermitian skin effect with open boundaries. In this article, we demonstrate another scenario beyond this perception by introducing a two-dimensional periodically driven model. The effective Floquet Hamiltonian lacks intrinsic spectral topology and is proportional to the identity matrix (representing a single point on the complex plane) under periodic boundary conditions. Yet, the Floquet Hamiltonian exhibits a second-order skin effect that is robust against perturbations and disorder under open boundary conditions. We further reveal the dynamical origin of these second-order skin modes and illustrate that they are characterized by a dynamical topological invariant of the full time-evolution operator.Comment: 10 pages, 4 figure

    Prevalence of Kaposi’s sarcoma-associated herpesvirus in Uygur and Han populations from the Urumqi and Kashgar regions of Xinjiang, China

    Get PDF
    Kaposi’s sarcoma-associated herpesvirus (KSHV) is the infectious etiologic agent associated with Kaposi’s sarcoma (KS), primary effusion lymphoma, and multicentric Castleman disease. It has been shown that high KSHV prevalence and high incidence of both classic KS and AIDSassociated KS are found mostly among people of Uygur ethnicity in Xinjiang, while people of Han ethnicity in Xinjiang have a higher KSHV seroprevalence than those of other Han populations in mainland China. However, it is still unclear why there is such geographical and population variation in KSHV distribution in China. In this work, we focused on the populations in the Kashgar region and Urumqi area, where a total of 1294 research subjects were randomly selected to investigate the potential correlation between KSHV prevalence and different ethnicities in endemic areas of Xinjiang, and to determine risk factors that may affect KSHV infection rates or KS incidence. We identified a high seroprevalence of KSHV and high peripheral blood DNA infection in the general Uygur and Han populations in both Urumqi and Kashgar regions of Xinjiang, and determined that advancing age, low education level, and stationary population status affect KSHV infection rates. Further, KSHV-positive Uygur participants were shown to have higher prevalence of neutralizing antibodies and neutralizing antibody titers than KSHV-positive Han participants
    corecore