11,448 research outputs found

    Effect of 6061 aluminum alloy wheel forging and spinning process parameters on forming quality

    Get PDF
    This paper mainly studies the influence of process parameters on the forming quality during the spinning process of 6061 aluminum alloy wheel forging blanks. The four parameters of spinning temperature, spindle speed, wheel feed and wall thickness reduction rate are selected for research, and the quality of the surface of the hub and the influence on the size of the hub are judged. Simufact software is used to simulate the influence of various process parameters on the forming quality of the hub. The results provide a certain reference for the reasonable selection of process parameters during the spinning forming process of 6061 aluminum alloy hub

    Estimation of Spin-Spin Interaction by Weak Measurement Scheme

    Full text link
    Precisely knowing an interaction Hamiltonian is crucial to realize quantum information tasks, especially to experimentally demonstrate a quantum computer and a quantum memory. We propose a scheme to experimentally evaluate the spin-spin interaction for a two-qubit system by the weak measurement technique initiated by Yakir Aharonov and his colleagues. Furthermore, we numerically confirm our proposed scheme in a specific system of a nitrogen vacancy center in diamond. This means that the weak measurement can also be taken as a concrete example of the quantum process tomography.Comment: 4 pages, 1 table, 2 figures, to appear in Europhysics Letter

    S-Lemma with Equality and Its Applications

    Full text link
    Let f(x)=xTAx+2aTx+cf(x)=x^TAx+2a^Tx+c and h(x)=xTBx+2bTx+dh(x)=x^TBx+2b^Tx+d be two quadratic functions having symmetric matrices AA and BB. The S-lemma with equality asks when the unsolvability of the system f(x)<0,h(x)=0f(x)<0, h(x)=0 implies the existence of a real number μ\mu such that f(x)+μh(x)0, xRnf(x) + \mu h(x)\ge0, ~\forall x\in \mathbb{R}^n. The problem is much harder than the inequality version which asserts that, under Slater condition, f(x)<0,h(x)0f(x)<0, h(x)\le0 is unsolvable if and only if f(x)+μh(x)0, xRnf(x) + \mu h(x)\ge0, ~\forall x\in \mathbb{R}^n for some μ0\mu\ge0. In this paper, we show that the S-lemma with equality does not hold only when the matrix AA has exactly one negative eigenvalue and h(x)h(x) is a non-constant linear function (B=0,b0B=0, b\not=0). As an application, we can globally solve inf{f(x)h(x)=0}\inf\{f(x)\vert h(x)=0\} as well as the two-sided generalized trust region subproblem inf{f(x)lh(x)u}\inf\{f(x)\vert l\le h(x)\le u\} without any condition. Moreover, the convexity of the joint numerical range {(f(x),h1(x),,hp(x)): xRn}\{(f(x), h_1(x),\ldots, h_p(x)):~x\in\Bbb R^n\} where ff is a (possibly non-convex) quadratic function and h1(x),,hp(x)h_1(x),\ldots,h_p(x) are affine functions can be characterized using the newly developed S-lemma with equality.Comment: 34 page

    Electricity Price Forecast using Meteorology data: A study in Australian Energy Market

    Full text link

    Stage of Charge Estimation of Lithium-ion Battery Packs Based on Improved Cubature Kalman Filter with Long Short-Term Memory Model

    Get PDF
    Accurate estimation of state of charge (SOC) of lithium-ion battery packs remains challenging due to inconsistencies among battery cells. To achieve precise SOC estimation of battery packs, firstly, a long short-term memory (LSTM) recurrent neural network (RNN)-based model is constructed to characterize the battery electrical performance, and a rolling learning method is proposed to update the model parameters for improving the model accuracy. Then, an improved square root-cubature Kalman filter (SRCKF) is designed together with the multi-innovation technique to estimate battery cell’s SOC. Next, to cope with inconsistencies among battery cells, the SOC estimation value from the maximum and minimum cells are combined with a smoothing method to estimate the pack SOC. The robustness and accuracy of the proposed battery model and cell SOC estimation method are verified by exerting the experimental validation under time-varying temperature conditions. Finally, real operation data are collected from an electric-scooter (ES) monitoring platform to further validate the generalization of the designed pack SOC estimation algorithm. The experimental results manifest that the SOC estimation error can be limited within 2% after convergence

    Learning Spatial-Semantic Relationship for Facial Attribute Recognition With Limited Labeled Data

    Get PDF
    Recent advances in deep learning have demonstrated excellent results for Facial Attribute Recognition (FAR), typically trained with large-scale labeled data. However, in many real-world FAR applications, only limited labeled data are available, leading to remarkable deterioration in performance for most existing deep learning-based FAR methods. To address this problem, here we propose a method termed Spatial-Semantic Patch Learning (SSPL). The training of SSPL involves two stages. First, three auxiliary tasks, consisting of a Patch Rotation Task (PRT), a Patch Segmentation Task (PST), and a Patch Classification Task (PCT), are jointly developed to learn the spatial-semantic relationship from large-scale unlabeled facial data. We thus obtain a powerful pre-trained model. In particular, PRT exploits the spatial information of facial images in a selfsupervised learning manner. PST and PCT respectively capture the pixel-level and image-level semantic information of facial images based on a facial parsing model. Second, the spatial-semantic knowledge learned from auxiliary tasks is transferred to the FAR task. By doing so, it enables that only a limited number of labeled data are required to fine-tune the pre-trained model. We achieve superior performance compared with state-of-the-art methods, as substantiated by extensive experiments and studies
    corecore