100 research outputs found

    Integration of genome-wide identification, transcriptome and association analysis of HSP20 gene family to revealing genetic basis of floral organ number-related traits in tree peony

    Get PDF
    The HSP20 family is the major member of heat shock proteins that are essential components involved in plant growth, development, and stress response, but little is known about tree peony (Paeonia suffruticosa). In this study, genome-wide analysis combining HSP20 gene family expression analysis of tree peony transcriptome was conducted, and the association between SNPs of HSP20s and flower organ number-related traits was analyzed. A total of 149 members were identified in the P. ostii genome, and divided into 10 subfamilies, most of which were classified into cytoplasm or nucleus. Interestingly, their protein sequences were highly conserved, mainly containing motif 1 or 3. In addition, a total of 38 deferentially expressed HSP20s were identified from transcriptome of flower buds with 5-carpels and polycarpels of P. ostii plants at three developmental stages, among which PoHSP89 and PoHSP133 were further cloned from 271 cultivars for association analysis. It indicated that seven or 19 pairs of associated combinations were obtained with the number of carpel, petal, stamen in PoHSP89 and PoHSP133, which could explain the phenotypic variation by 1.79% to 4.06%, and 1.92% to 12.37%, respectively. It will provide a valuable basis for clarifying the phylogenetic relationship to understand their biological function within the HSP20 gene family, and the identified candidate genes and their corresponding associated SNP loci would reveal the genetic basis on floral organ number variation and be useful for molecular marker-assisted breeding of tree peony in view to improving ornamental traits and yields

    Calcium Supplementation Enhanced Adipogenesis and Improved Glucose Homeostasis Through Activation of Camkii and PI3K/Akt Signaling Pathway in Porcine Bone Marrow Mesenchymal Stem Cells (pBMSCs) and Mice Fed High Fat Diet (HFD)

    Get PDF
    Background/Aims: It has been implicated that calcium supplementation is involved in reducing body weight/fat and improving glucose homeostasis. However, the underlying mechanisms are still not fully understood. Here, we investigated the effects of calcium supplementation on adipogenesis and glucose homeostasis in porcine bone marrow mesenchymal stem cells (pBMSCs) and high fat diet (HFD)-fed mice and explored the involved signaling pathways. Methods: In vitro, pBMSCs were treated with 4 mM extracellular calcium ([Ca2+]o) and/or 1 μM nifedipine, 0.1 μM BAPTA-AM, 1 μM KN-93, 50 nM wortmannin for 10 days. The intracellular calcium ([Ca2+]i) levels were measured using Fluo 3-AM by flow cytometry. The adipogenic differentiation of pBMSCs was determined by Oil Red-O staining and triglyceride assay. The expression of marker genes involved in adipogenesis (peroxisome proliferator activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα)) and glucose uptake (glucose transporter 4 (GLUT4)), as well as the activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and PI3K/Akt-FoxO1/AS160 signaling pathways were determined by Western blotting. Glucose uptake and utilization were examined using 2-NBDG assay and glucose content assay, respectively. In vivo, C57BL/6J male mice were fed a HFD (containing 1.2% calcium) without or with 0.6% (w/w) calcium chloride in drinking water for 13 weeks. The adipogenesis, glucose homeostasis and the involvement of CaMKII and PI3K/Akt signaling pathway were also assessed. Results: In vitro, [Ca2+]o stimulated pBMSCs adipogenesis by increasing [Ca2+]i level and activating CaMKII and PI3K/Akt-FoxO1 pathways. In addition, [Ca2+]o promoted glucose uptake/utilization by enhancing AS160 phosphorylation, GLUT4 expression and translocation. However, the stimulating effects of [Ca2+]o on pBMSCs adipogenesis and glucose uptake/utilization were abolished by L-VGCC blocker Nifedipine, [Ca2+]i chelator BAPTA-AM, CaMKII inhibitor KN-93, or PI3K inhibitor Wortmannin. In vivo, calcium supplementation decreased body weight and fat content, increased adipocyte number, and improved glucose homeostasis, with elevated PPARγ and GLUT4 expression and PI3K/Akt activation in iWAT. Conclusion: calcium supplementation enhanced adipogenesis and glucose uptake in pBMSCs, which was coincident with the increased adipocyte number and improved glucose homeostasis in HFD-fed mice, and was associated with activation of CaMKII and PI3K/Akt-FoxO1/AS160 pathways. These data provided a broader understanding of the mechanisms underlying calcium-induced body weight/fat loss and glycemic control

    Relationship between the Composition of Flavonoids and Flower Colors Variation in Tropical Water Lily (Nymphaea) Cultivars

    Get PDF
    Water lily, the member of the Nymphaeaceae family, is the symbol of Buddhism and Brahmanism in India. Despite its limited researches on flower color variations and formation mechanism, water lily has background of blue flowers and displays an exceptionally wide diversity of flower colors from purple, red, blue to yellow, in nature. In this study, 34 flavonoids were identified among 35 tropical cultivars by high-performance liquid chromatography (HPLC) with photodiode array detection (DAD) and electrospray ionization mass spectrometry (ESI-MS). Among them, four anthocyanins: delphinidin 3-O-rhamnosyl-5-O-galactoside (Dp3Rh5Ga), delphinidin 3-O-(2″-O-galloyl-6″-O-oxalyl-rhamnoside) (Dp3galloyl-oxalylRh), delphinidin 3-O-(6″-O-acetyl-β-glucopyranoside) (Dp3acetylG) and cyanidin 3- O-(2″-O-galloyl-galactopyranoside)-5-O-rhamnoside (Cy3galloylGa5Rh), one chalcone: chalcononaringenin 2′-O-galactoside (Chal2′Ga) and twelve flavonols: myricetin 7-O-rhamnosyl-(1→2)-rhamnoside (My7RhRh), quercetin 7-O-galactosyl-(1→2)-rhamnoside (Qu7GaRh), quercetin 7-O-galactoside (Qu7Ga), kaempferol 7-O-galactosyl-(1→2)-rhamnoside (Km7GaRh), myricetin 3-O-galactoside (My3Ga), kaempferol 7-O-galloylgalactosyl-(1→2)-rhamnoside (Km7galloylGaRh), myricetin 3-O-galloylrhamnoside (My3galloylRh), kaempferol 3-O-galactoside (Km3Ga), isorhamnetin 7-O-galactoside (Is7Ga), isorhamnetin 7-O-xyloside (Is7Xy), kaempferol 3-O-(3″-acetylrhamnoside) (Km3-3″acetylRh) and quercetin 3-O-acetylgalactoside (Qu3acetylGa) were identified in the petals of tropic water lily for the first time. Meanwhile a multivariate analysis was used to explore the relationship between pigments and flower color. By comparing, the cultivars which were detected delphinidin 3-galactoside (Dp3Ga) presented amaranth, and detected delphinidin 3′-galactoside (Dp3′Ga) presented blue. However, the derivatives of delphinidin and cyanidin were more complicated in red group. No anthocyanins were detected within white and yellow group. At the same time a possible flavonoid biosynthesis pathway of tropical water lily was presumed putatively. These studies will help to elucidate the evolution mechanism on the formation of flower colors and provide theoretical basis for outcross breeding and developing health care products from this plant

    Production of Transgenic Pigs Mediated by Pseudotyped Lentivirus and Sperm

    Get PDF
    Sperm-mediated gene transfer can be a very efficient method to produce transgenic pigs, however, the results from different laboratories had not been widely repeated. Genomic integration of transgene by injection of pseudotyped lentivirus to the perivitelline space has been proved to be a reliable route to generate transgenic animals. To test whether transgene in the lentivirus can be delivered by sperm, we studied incubation of pseudotyped lentiviruses and sperm before insemination. After incubation with pig spermatozoa, 62±3 lentiviral particles were detected per 100 sperm cells using quantitative real-time RT-PCR. The association of lentivirus with sperm was further confirmed by electron microscopy. The sperm incubated with lentiviral particles were artificially inseminated into pigs. Of the 59 piglets born from inseminated 5 sows, 6 piglets (10.17%) carried the transgene based on the PCR identification. Foreign gene and EGFP was successfully detected in ear tissue biopsies from two PCR-positive pigs, revealed via in situ hybridization and immunohistochemistry. Offspring of one PCR-positive boar with normal sows showed PCR-positive. Two PCR-positive founders and offsprings of PCR-positive boar were further identified by Southern-blot analysis, out of which the two founders and two offsprings were positive in Southern blotting, strongly indicating integration of foreign gene into genome. The results indicate that incubation of sperm with pseudotyped lentiviruses can incorporated with sperm-mediated gene transfer to produce transgenic pigs with improved efficiency

    A Comprehensive Expression Profile of MicroRNAs in Porcine Pituitary

    Get PDF
    MicroRNAs (miRNAs) are an abundant class of small RNAs that regulate expressions of most genes. miRNAs play important roles in the pituitary, the “master” endocrine organ.However, we still don't know which role miRNAs play in the development of pituitary tissue or how much they contribute to the pituitary function. By applying a combination of microarray analysis and Solexa sequencing, we detected a total of 450 miRNAs in the porcine pituitary. Verification with RT-PCR showed a high degree of confidence for the obtained data. According to the current miRBase release17.0, the detected miRNAs included 169 known porcine miRNAs, 163 conserved miRNAs not yet identified in the pig, and 12 potentially new miRNAs not yet identified in any species, three of which were revealed using Northern blot. The pituitary might contain about 80.17% miRNA types belonging to the animal. Analysis of 10 highly expressed miRNAs with the Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated that the enriched miRNAs were involved not only in the development of the organ but also in a variety of inter-cell and inner cell processes or pathways that are involved in the function of the organ

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Inhibitory Effect of Acer truncatum Bunge Seed Coat Extract on Fatty Acid Synthase, Differentiation and Lipid Accumulation in 3T3-L1 Adipocytes

    No full text
    Acer truncatum Bunge is now widely cultivated throughout the world. Fatty acid synthase (FAS) is a potential target in the treatment of both obesity and cancer. Only a few FAS inhibitors have been reported. In this study, the inhibitory effect of A. truncatum seed coat (ESA) on FAS and the inhibition mechanisms were investigated using a FAS activity assay and an enzyme kinetics study. The main chemicals of ESA were analyzed with UPLC-MS/MS. The effects of ESA on 3T3-L1 adipocyte differentiation and lipid accumulation were investigated using Oil red O staining. We first identified seven main compounds (quinic acid, malic acid, gentisic acid, procyanidin dimer, procyanidin trimer, catechin, and quercetin) from 50% ethanol extracts of seed coats of A. truncatum (ESAs), which were then found to inhibit 3T3-L1 adipocyte differentiation at the concentration of 50 μg/mL. ESA obviously reduced the visible triglyceride droplets accumulation, and dramatically decreased the number of the adipocytes at a comparatively high concentration. It is suggested that the effects are due to the inhibition of FAS by ESA; FAS activity is inhibited by ESA at a half inhibition concentration (IC50) of 0.57 μg/mL, which is lower than that of classically known FAS inhibitors. Meanwhile, ESA displayed different inhibition kinetics and reacting sites for FAS. These results provide new clues for the development of novel products for obesity treatment and a scientific basis for the full use of byproducts for future industrial production of vegetable oil

    Phytochemical profiles and the hypoglycemic effects of tree peony seed coats

    No full text
    As emerging woody oil crops, the tree peony seeds recently have been attracting great attention for their metabolites and bioactivities. In this research, the phytochemical profiles of the seed coats of tree peonies from different production regions were investigated systematically. Twelve phytochemicals were separated and prepared, mainly belonging to stilbenes. A great variation in stilbene content was detected in the three Paeonia plants, and Paeonia ostii seed coats (POSC) had significantly higher contents of the stilbene compounds than other species. There were nineteen significant correlations between ecogeographical factors and the predominant compounds. A clear discrimination among the species was observed in their HPLC fingerprint and chemometric analysis. Furthermore, POSC extracts could significantly reduce the starch mediated PBG (postprandial blood glucose) levels in normal/diabetic mice. Meanwhile, in vitro enzyme tests revealed that the predominant compounds, suffruticosol B and ampelopsin D, could effectively and competitively inhibit alpha-glucosidase, indicating that POSC could be a natural source of hypoglycemics in the food and drug fields
    corecore