6,111 research outputs found

    Learning an Explicit Hyperparameter Prediction Policy Conditioned on Tasks

    Full text link
    Meta learning has attracted much attention recently in machine learning community. Contrary to conventional machine learning aiming to learn inherent prediction rules to predict labels for new query data, meta learning aims to learn the learning methodology for machine learning from observed tasks, so as to generalize to new query tasks by leveraging the meta-learned learning methodology. In this study, we interpret such learning methodology as learning an explicit hyperparameter prediction policy shared by all training tasks. Specifically, this policy is represented as a parameterized function called meta-learner, mapping from a training/test task to its suitable hyperparameter setting, extracted from a pre-specified function set called meta learning machine. Such setting guarantees that the meta-learned learning methodology is able to flexibly fit diverse query tasks, instead of only obtaining fixed hyperparameters by many current meta learning methods, with less adaptability to query task's variations. Such understanding of meta learning also makes it easily succeed from traditional learning theory for analyzing its generalization bounds with general losses/tasks/models. The theory naturally leads to some feasible controlling strategies for ameliorating the quality of the extracted meta-learner, verified to be able to finely ameliorate its generalization capability in some typical meta learning applications, including few-shot regression, few-shot classification and domain generalization.Comment: 59 pages. arXiv admin note: text overlap with arXiv:1904.03758 by other author

    Secure Healthcare Applications Data Storage in Cloud Using Signal Scrambling Method

    Get PDF
    A body sensor network that consists of wearable and/or implantable biosensors has been an important front-end for collecting personal health records. It is expected that the full integration of outside-hospital personal health information and hospital electronic health records will further promote preventative health services as well as global health. However, the integration and sharing of health information is bound to bring with it security and privacy issues. With extensive development of healthcare applications, security and privacy issues are becoming increasingly important. This paper addresses the potential security risks of healthcare data in Internet based applications, and proposes a method of signal scrambling as an add-on security mechanism in the application layer for a variety of healthcare information, where a piece of tiny data is used to scramble healthcare records. The former is kept locally whereas the latter, along with security protection, is sent for cloud storage. The tiny data can be derived from a random number generator or even a piece of healthcare data, which makes the method more flexible. The computational complexity and security performance in terms of theoretical and experimental analysis has been investigated to demonstrate the efficiency and effectiveness of the proposed method. The proposed method is applicable to all kinds of data that require extra security protection within complex networks
    • …
    corecore