2,374 research outputs found

    DiactTOD: Learning Generalizable Latent Dialogue Acts for Controllable Task-Oriented Dialogue Systems

    Full text link
    Dialogue act annotations are important to improve response generation quality in task-oriented dialogue systems. However, it can be challenging to use dialogue acts to control response generation in a generalizable way because different datasets and tasks may have incompatible annotations. While alternative methods that utilize latent action spaces or reinforcement learning do not require explicit annotations, they may lack interpretability or face difficulties defining task-specific rewards. In this work, we present a novel end-to-end latent dialogue act model (DiactTOD) that represents dialogue acts in a latent space. DiactTOD, when pre-trained on a large corpus, is able to predict and control dialogue acts to generate controllable responses using these latent representations in a zero-shot fashion. Our approach demonstrates state-of-the-art performance across a wide range of experimental settings on the MultiWOZ dataset, including zero-shot, few-shot, and full data fine-tuning with both end-to-end and policy optimization configurations.Comment: SIGDial 202

    User Simulation with Large Language Models for Evaluating Task-Oriented Dialogue

    Full text link
    One of the major impediments to the development of new task-oriented dialogue (TOD) systems is the need for human evaluation at multiple stages and iterations of the development process. In an effort to move toward automated evaluation of TOD, we propose a novel user simulator built using recently developed large pretrained language models (LLMs). In order to increase the linguistic diversity of our system relative to the related previous work, we do not fine-tune the LLMs used by our system on existing TOD datasets; rather we use in-context learning to prompt the LLMs to generate robust and linguistically diverse output with the goal of simulating the behavior of human interlocutors. Unlike previous work, which sought to maximize goal success rate (GSR) as the primary metric of simulator performance, our goal is a system which achieves a GSR similar to that observed in human interactions with TOD systems. Using this approach, our current simulator is effectively able to interact with several TOD systems, especially on single-intent conversational goals, while generating lexically and syntactically diverse output relative to previous simulators that rely upon fine-tuned models. Finally, we collect a Human2Bot dataset of humans interacting with the same TOD systems with which we experimented in order to better quantify these achievements.Comment: 13 page

    Conversation Style Transfer using Few-Shot Learning

    Full text link
    Conventional text style transfer approaches for natural language focus on sentence-level style transfer without considering contextual information, and the style is described with attributes (e.g., formality). When applying style transfer on conversations such as task-oriented dialogues, existing approaches suffer from these limitations as context can play an important role and the style attributes are often difficult to define in conversations. In this paper, we introduce conversation style transfer as a few-shot learning problem, where the model learns to perform style transfer by observing only the target-style dialogue examples. We propose a novel in-context learning approach to solve the task with style-free dialogues as a pivot. Human evaluation shows that by incorporating multi-turn context, the model is able to match the target style while having better appropriateness and semantic correctness compared to utterance-level style transfer. Additionally, we show that conversation style transfer can also benefit downstream tasks. Results on multi-domain intent classification tasks show improvement in F1 scores after transferring the style of training data to match the style of test data

    Pre-training Intent-Aware Encoders for Zero- and Few-Shot Intent Classification

    Full text link
    Intent classification (IC) plays an important role in task-oriented dialogue systems as it identifies user intents from given utterances. However, models trained on limited annotations for IC often suffer from a lack of generalization to unseen intent classes. We propose a novel pre-training method for text encoders that uses contrastive learning with intent psuedo-labels to produce embeddings that are well-suited for IC tasks. By applying this pre-training strategy, we also introduce the pre-trained intent-aware encoder (PIE). Specifically, we first train a tagger to identify key phrases within utterances that are crucial for interpreting intents. We then use these extracted phrases to create examples for pre-training a text encoder in a contrastive manner. As a result, our PIE model achieves up to 5.4% and 4.0% higher accuracy than the previous state-of-the-art pre-trained sentence encoder for the N-way zero- and one-shot settings on four IC datasets
    • …
    corecore